Tìm x,y:
a)\(\frac{x}{2}=\frac{y}{5}\)
và xy=90
b)\(\frac{3x-y}{x+y}=\frac{3}{4}\)
và x+y=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a, đặt x/4=k suy ra x=4k,y/7=k suy ra y=7k thay x=4k, 7=7k vào xy=112 ta có: 4k.7k=112 28.k^2=112 k^2=112:28 k^2=4 k =4,-4 TH1 thay k=4 vào ta có:x=4k suy ra x=4.4=4 y=7k suy ra y=7.4=28 TH2 là tương tự , e và f là tương tự
a) x= 4y/7 thay vao có:
4y,y/7 =112
y.y =196
y = 14
x = 4.14/7 = 8
e) tuong tu
f) x2/25 = y2/16
k = 1/9
x = 5/9
y = 4/9
1 Ta có x -24 = y
Suy ra x - y = 24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/7 = y/3 = x-y/7-3 =24/4=6
suy ra x= 42
y = 18
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
a)
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{y}{5}\)
Áp dụng tc của dãy tỉ só bằng nhau
\(\Rightarrow\frac{3x}{6}=\frac{y}{5}=\frac{3x-y}{6-5}=\frac{10}{1}=10\)
=> x=2.10=20
y=5.10=50
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{xy}{10}=\frac{30}{10}=3\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{12}\\x=-\sqrt{12}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}y=\sqrt{75}\\y=-\sqrt{75}\end{array}\right.\)
Mà 2;5 cùng dấu
=> x; y cùng dấu
Vậy \(\left(x;y\right)=\left(\sqrt{12};\sqrt{75}\right);\left(-\sqrt{12};-\sqrt{75}\right)\)
Đặt \(k=\frac{x}{2}=\frac{y}{5}\)
Khi đó : \(k^2=\frac{xy}{2.5}=\frac{90}{10}=9\)
Suy ra : \(k=-3;3\)
+ k = -3 thì : \(\frac{x}{2}=-3\Rightarrow x=-6\)
\(\frac{y}{5}=-3\Rightarrow y=-15\)
+ k = 3 thì : \(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{5}=3\Rightarrow y=15\)
a) x=6 hoặc -6
y= 15 hoặc -15