Tìm hàm số có đồ thị là đường thẳng song song với đồ thị hàm số \(y = - 2x + 10\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)
hay \(m\ne3\)
a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì
Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được:
\(\left(m-3\right)\cdot0+m+2=-3\)
\(\Leftrightarrow m+2=-3\)
hay m=-5(nhận)
b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì
\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1
a: Vì (d) song song với y=2x-3 nên a=2
Vậy: (d): y=2x+b
Thay x=1 và y=1 vào (d), ta được:
b+2=1
hay b=-1
b: Vì (d) song song với y=2x nên a=2
Vậy: (d): y=2x+b
Thay x=-3 và y=0 vào (d), ta được:
b-6=0
hay b=6
a: Để hàm số y=(1-m)x+m-2 là hàm số bậc nhất thì \(1-m\ne0\)
=>\(m\ne1\)
c: Để đồ thị hàm số y=(1-m)x+m-2 song song với đường thẳng y=2x-3 thì
\(\left\{{}\begin{matrix}1-m=2\\m-2\ne-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m\ne-1\end{matrix}\right.\)
=>\(m\in\varnothing\)
d: Để đồ thị hàm số y=(1-m)x+m-2 cắt đường thẳng y=-x+1 thì \(1-m\ne-1\)
=>\(m\ne2\)
e: Thay x=2 và y=1 vào y=(1-m)x+m-2, ta được:
2(1-m)+m-2=1
=>2-2m+m-2=1
=>-m=1
=>m=-1
g: Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Ox một góc nhọn thì 1-m>0
=>m<1
Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Oy một góc tù thì 1-m<0
=>m>1
h: Thay x=0 và y=3 vào y=(1-m)x+m-2, ta được:
0(1-m)+m-2=3
=>m-2=3
=>m=5
f: Thay x=-2 và y=0 vào y=(1-m)x+m-2, ta được:
-2(1-m)+m-2=0
=>-2+2m+m-2=0
=>3m-4=0
=>3m=4
=>\(m=\dfrac{4}{3}\)
Sửa đề: y=(m-2)x+3
a: Để đồ thị hàm số y=(m-2)x+3//y=2x-3 thì \(\left\{{}\begin{matrix}m-2=2\\3< >-3\left(đúng\right)\end{matrix}\right.\)
=>m-2=2
=>m=4
b: Thay x=1 và y=2 vào y=(m-2)x+3, ta được:
\(1\left(m-2\right)+3=2\)
=>m-2+3=2
=>m+1=2
=>m=1
c: (d1): y=2x+3
Gọi \(\alpha\) là góc tạo bởi đường thẳng (d1) với trục Ox
(d1): y=2x+3 nên a=2
\(tan\alpha=a=2\)
=>\(\alpha\simeq63^026'\)
Khi m=1 thì (d2): y=(1-2)x+3=-x+3
Gọi \(\beta\) là góc tạo bởi (d2) với trục Ox
(d2): y=-x+3
=>a=-1
=>\(tan\beta=a=-1\)
=>\(\beta=135^0\)
Gọi hàm số cần tìm là \(y = ax + b\).
Đồ thị hàm số là đường thẳng \(d:y = ax + b\). Vì đường thẳng \(d\) song song với đường thẳng \(y = - 2x + 10\) nên ta có: \(\left\{ \begin{array}{l}a = - 2\\b \ne 10\end{array} \right.\).
Vậy hàm số cần tìm là \(y = - 2x + b\) với \(b \ne 10\).