K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2023

a)

- Vẽ đồ thị hàm số \(y = x\).

Cho \(x = 1 \Rightarrow y = 1 \Rightarrow \)Đồ thị hàm số đi qua điểm \(M\left( {1;1} \right)\).

Đồ thị hàm số \(y = x\) là đường thẳng đi qua hai điểm \(O\) và \(M\).

- Vẽ đồ thị hàm số \(y = x + 2\)

Cho \(x = 0 \Rightarrow y = 2\) ta được điểm \(A\left( {0;2} \right)\) trên trục \(Oy\).

Cho \(y = 0 \Rightarrow x = \dfrac{{ - 2}}{1} =  - 2\) ta được điểm \(B\left( { - 2;0} \right)\) trên \(Ox\).

Đồ thị hàm số \(y = x + 2\) là đường thẳng đi qua hai điểm \(A\) và \(B\).

b) Góc tạo bởi hai đường thẳng  \(y = x\) và \(y = x + 2\) với trục \(Ox\) lần lượt là \({\alpha _1}\) và \({\alpha _2}\).

Dùng thước đo độ kiểm tra ta thấy số đo \({\alpha _1} = {\alpha _2} = 45^\circ \).

12 tháng 12 2023

a: 

loading...

b: Phương trình hoành độ giao điểm là:

-2x+5=x+2

=>-2x-x=2-5

=>-3x=-3

=>x=1

Thay x=1 vào y=x+2, ta được;

y=1+2=3

Vậy: A(1;3)

c: Sửa đề: Tính góc tạo bởi đường thẳng y=x+2 với trục Ox

Gọi \(\alpha\) là góc tạo bởi đường thẳng y=x+2 với trục Ox

y=x+2 nên a=1

=>\(tan\alpha=a=1\)

=>\(\alpha=45^0\)

d: Vì (d)//y=-3x-1 nên \(\left\{{}\begin{matrix}a=-3\\b\ne-1\end{matrix}\right.\)

Vậy: (d): y=-3x+b

Thay x=1 và y=3 vào (d), ta được:

\(b-3\cdot1=3\)

=>b-3=3

=>b=6(nhận)

Vậy: (d): y=-3x+6

b: Tọa độ điểm C là:

\(\left\{{}\begin{matrix}x-3=-2x+3\\y=x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

25 tháng 11 2023

a: loading...

b: Phương trình hoành độ giao điểm là:

4x-2=-x+3

=>4x+x=3+2

=>5x=5

=>x=1

Thay x=1 vào y=-x+3, ta được:

\(y=-1+3=2\)

Vậy: M(1;2)

c: Gọi \(\alpha;\beta\) lần lượt là góc tạo bởi (d1),(d2) với trục Ox

(d1): y=4x-2

=>\(tan\alpha=4\)

=>\(\alpha=76^0\)

(d2): y=-x+3

=>\(tan\beta=-1\)

=>\(\beta=135^0\)

d: Thay y=6 vào (d1), ta được:

4x-2=6

=>4x=8

=>x=2

=>A(2;6)

Thay x=6/2=3 vào (d2), ta được:

\(y=-3+3=0\)

vậy: B(3;0)

Vì (d):y=ax+b đi qua A(2;6) và B(3;0) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=6\\3a+b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+b-3a-b=6-0\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=6\\b=-3a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-6\\b=-3\cdot\left(-6\right)=18\end{matrix}\right.\)

Vậy: (d): y=-6x+18

e: A(2;6); B(3;0); M(1;2)

\(AM=\sqrt{\left(1-2\right)^2+\left(2-6\right)^2}=\sqrt{17}\)

\(BM=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(3-2\right)^2+\left(0-6\right)^2}=\sqrt{37}\)

Chu vi tam giác AMB là:

\(C_{AMB}=\sqrt{17}+2\sqrt{2}+\sqrt{37}\)

Xét ΔAMB có 

\(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{17+8-37}{2\cdot2\sqrt{2}\cdot\sqrt{17}}=\dfrac{-3}{\sqrt{34}}\)

=>\(\widehat{AMB}\simeq121^0\) và \(sinAMB=\sqrt{1-\left(-\dfrac{3}{\sqrt{34}}\right)^2}=\dfrac{5}{\sqrt{34}}\)

Xét ΔAMB có

\(\dfrac{AB}{sinAMB}=\dfrac{AM}{sinABM}=\dfrac{BM}{sinBAM}\)

=>\(\dfrac{\sqrt{17}}{sinABM}=\dfrac{2\sqrt{2}}{sinBAM}=\sqrt{37}:\dfrac{5}{\sqrt{34}}\)

=>\(sinABM\simeq0,58;\widehat{BAM}\simeq0,4\)

=>\(\widehat{ABM}\simeq35^0;\widehat{BAM}\simeq24^0\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

Lời giải:

a.

 

Đồ thị màu xanh lá: $y=\frac{1}{2}x+1$

Đồ thị màu xanh dương: $y=-x-1$

b.

Ta có:

$\tan \alpha=\frac{1}{2}\Rightarrow \alpha=26,57^0$

$\tan \beta = -1\Rightarrow \beta=135^0$

 

 

22 tháng 11 2021

\(b,\) PT giao Ox tại A và B: \(\left\{{}\begin{matrix}x+2=0\Rightarrow x=-2\Rightarrow A\left(-2;0\right)\\-x+4=0\Rightarrow x=4\Rightarrow B\left(4;0\right)\end{matrix}\right.\)

PT hoành độ giao điểm: \(x+2=-x+4\Rightarrow x=1\Rightarrow y=3\Rightarrow C\left(1;3\right)\)

\(c,OA=\left|x_A\right|=2;OB=\left|x_B\right|=4\\ \Rightarrow AB=OA+OB=6\left(cm\right)\\ \left\{{}\begin{matrix}AC=\sqrt{\left(-2-1\right)^2+3^2}=2\sqrt{3}\left(cm\right)\\BC=\sqrt{\left(4-1\right)^2+3^2}=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Kẻ đường cao CH của ABC

\(\Rightarrow CH=\left|y_C\right|=3\left(cm\right)\)

\(\Rightarrow P_{ABC}=AB+BC+CA=4\sqrt{3}+6\left(cm\right)\\ S_{ABC}=\dfrac{1}{2}CH\cdot AB=\dfrac{1}{2}\cdot3\cdot6=9\left(cm^2\right)\)

22 tháng 11 2021

nay lm GTTĐ r hẻ

12 tháng 9 2023

Gọi \({\alpha _1};{\alpha _2}\) lần lượt là 2 góc tạo bởi đường thẳng \({d_1};{d_2}\) với \(Ox\).

Dùng thước đo độ ta kiểm tra được\({\alpha _1} = 45^\circ ;{\alpha _2} = 135^\circ \).

30 tháng 11 2021

b. PTHĐGĐ của hai hàm số:

\(x+2=-2x+1\)

\(\Rightarrow x=-\dfrac{1}{3}\)

Thay x vào hs đầu tiên: \(y=-\dfrac{1}{3}+2=\dfrac{5}{3}\)

Tọa độ điểm \(A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\)

30 tháng 11 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+2=-2x+1\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)

10 tháng 2 2017

a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x.

Vẽ đường thẳng qua B(0; 2) và A(-2; -2) được đồ thị hàm số y = 2x + 2.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

        2x + 2 = x

=> x = -2 => y = -2

Suy ra tọa độ giao điểm là A(-2; -2).

c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.

- Tọa độ điểm C:

Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

    x = 2 => y = 2 => tọa độ C(2; 2)

- Tính diện tích tam giác ABC: (với BC là đáy, AE là chiều cao tương ứng với đáy BC)

Để học tốt Toán 9 | Giải bài tập Toán 9

2 tháng 2 2021

a) 1 0 2 y x C y = x y=2x+2 H B -1 2

+) y = 2x + 2

Cho x = 0 => y = 2

                => ( 0 ; 2 )

        y = 0 => x = -1

                => ( -1 ; 0 )

- Đồ thị hàm số y = x đi qua 2 điểm có tọa độ ( 0 ; 0 )

- Đồ thị hàm số y = 2x + 2 đi qua 2 điểm có tọa độ ( 0 ; 2 ) và ( -1 ; 0 )

b) Hoành độ điểm A là nghiệm của PT sau :

x = 2x + 2

<=> 2x - x = -2

<=> x = -2

=> y = -2 

Vậy A ( -2 ; -2 )

c) Tung độ điểm C = 2 => hoành độ điểm C là x = 2

=> C ( 2 ; 2 )

Từ A hạ \(AH\perp BC\), ta có : AH = 4cm

                                                 BC = 2cm

Vậy : ..............

\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4.2=4\left(cm^2\right)\)

2 tháng 12 2021

\(b,\text{PT hoành độ giao điểm: }x+2=-2x+1\Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\Leftrightarrow y=\dfrac{5}{3}\Leftrightarrow A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\\ c,\text{Gọi }y=ax+b\left(a\ne0\right)\text{ là đt cần tìm}\\ \Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne1\\-\dfrac{1}{3}a+b=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{7}{3}\end{matrix}\right.\\ \Leftrightarrow y=2x+\dfrac{7}{3}\)