3-2/2x-3=2/5+2/9-6x-3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
=>căn x-3=0
=>x-3=0
=>x=3
2: =>\(\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+2\cdot\sqrt{2x-3}\cdot4+16}=5\)
=>\(\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
=>2*căn 2x-3+5=5
=>2x-3=0
=>x=3/2
a: Ta có: \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)
\(=4x^2+12x+9+4x^2-12x+9-8x^2+18\)
\(=36\)
Bài 2:
a: \(\left(y^2+6x^2\right)\left(y^2-6x^2\right)=y^4-36x^4\)
b: \(\left(4x+5\right)\left(16x^2-20x+25\right)=\left(16x^2-25\right)\left(4x-5\right)\)
\(=64x^3-16x^2-100x+125\)
p) \(\left(9-x\right)\left(x^2+2x-3\right)\)
\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)
\(=9x^2+18x-27-x^3-2x^2+3x\)
\(=-x^3+7x^2+21x-27\)
n) \(\left(-x+3\right)\left(x^2+x+1\right)\)
\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=-x^3-x^2-x+3x^2+3x+3\)
\(=-x^2+2x^2+2x+3\)
o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)
\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)
\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)
\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)
q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)
\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)
\(=6x^3-12x^2-18x+x^2-2x-3\)
\(=6x^3-11x^2-20x-3\)
r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)
\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)
\(=-2x^3-6x^2+2x-x^2-3x+1\)
\(=-2x^3-7x^2-x+1\)
u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)
\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)
\(=-2x^3+2x^2+12x+3x^2-3x-18\)
\(=-2x^3+5x^2+9x-18\)
s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)
\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)
\(=-4x^3-12x^2+8x+5x^2+15x-10\)
\(=-4x^3-7x^2+23x-10\)
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)
\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)
\(=-x^2-3+2x^4+6x+18-12x^3\)
\(=2x^4-12x^3-x^2+6x+15\)
p: (-x+9)(x^2+2x-3)
=-x^3-2x^2+3x+9x^2+18x-27
=-x^3+7x^2+21x-27
n: (-x+3)(x^2+x+1)
=-x^3-x^2-x+3x^2+3x+3
=-x^3+2x^2+2x+3
o: (-6x+1/2)(x^2-4x+2)
=-6x^3+24x^2-12x+1/2x^2-2x+1
=-64x^3+49/2x^2-14x+1
q: (6x+1)(x^2-2x-3)
=6x^3-12x^2-18x+x^2-2x-3
=6x^3-11x^2-20x-3
r: (2x+1)(-x^2-3x+1)
=-2x^3-6x^2+2x-x^2-3x+1
=-2x^3-7x^2-x+1
u: =-2x^3+2x^2+12x+3x^2-3x-18
=-2x^3+5x^2+9x-18
s: =-4x^3-12x^2+8x+5x^2+15x-10
=-4x^3-7x^2+23x-10
ĐKXĐ : \(x\ne\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{2}{9-6x}+\dfrac{2}{2x-3}=3-\dfrac{2}{5}+\dfrac{3}{2}=\dfrac{41}{10}\)
\(\Leftrightarrow\dfrac{\dfrac{2}{-3}}{2x-3}+\dfrac{2}{2x-3}=\dfrac{41}{10}\)
\(\Leftrightarrow\left(\dfrac{1}{2x-3}\right)\left(-\dfrac{2}{3}+2\right)=\dfrac{41}{10}\)
\(\Leftrightarrow\dfrac{1}{2x-3}=\dfrac{123}{40}\)
\(\Leftrightarrow2x-3=\dfrac{40}{123}\)
\(\Leftrightarrow x=\dfrac{409}{246}\) ( TM )
Vậy ...
`3-2/(2x-3)=2/5+2/(9-6x)-3/2(x ne 3/2)`
`<=>3+3/2-2/5=2/(9-6x)-2/(2x-3)`
`<=>41/10=-2/(6x-9)+2/(2x-3)`
`<=>41/10=-2/(3(2x-3))+2/(2x-3)`
`<=>41/10=4/(3(2x-3)`
`<=>2x-3=40/123`
`<=>2x=409/123`
`<=>x=409/246`
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
a: =>|x-3|=4-x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =4\\\left(4-x-x+3\right)\left(4-x+x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =4\\\left(7-2x\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{7}{2}\)
b: =>|x-5|=3-19x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{19}\\\left(x-5-3+19x\right)\left(x-5+3-19x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{19}\\\left(20x-8\right)\left(-18x-2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{1}{9}\right\}\)
c: =>\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
=>căn x-3=0
=>x=3
2: 12-10x=25-30x
=>20x=13
=>x=13/20
3: \(3\left(2x+3\right)-2\left(4x-5\right)=10x+21\)
=>6x+9-8x+10=10x+21
=>10x+21=-2x+19
=>12x=-2
=>x=-1/6
4: \(\Leftrightarrow25x-15-6x+12=11-5x\)
=>19x-3=11-5x
=>24x=14
=>x=7/12
5: \(\Leftrightarrow8-12x-5+10x=4-6x\)
=>4-6x=-2x+3
=>-4x=-1
=>x=1/4
6: \(\Leftrightarrow32x-24-6+9x=13-40x\)
=>41x-30=13-40x
=>81x=43
=>x=43/81
7: \(\Leftrightarrow10x-5+20x=5x-11\)
=>30x-5=5x-11
=>25x=-6
=>x=-6/25