cho hình thang ABCD AB>CD và AC vuông gốc BC. Trên cạnh đáy AB lấy M sao cho AM=(BA+CD)/2. Chứng minh CA là phân giác của góc MCD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
1 tháng 10 2018
Qua C dựng đường thẳng song song với BD cắt đường thẳng AB tại điểm N.
Xét tứ giác DCNB có: CN // BD; BN // CD => Tứ giác DCNB là hình bình hành
=> DC = BN => (DC + AB)/2 = (BN + AB)/2 = AN/2 (1)
Ta có: M thuộc [AN]; AM = (DC + AB)/2 (2)
(1); (2) => AM = AN/2 => M là trung điểm của AN = >CM là trung tuyến \(\Delta\)ACN
Lại có: AC vuông góc BD; BD // CN => AC vuông góc CN (Qh //; vuông góc)
Xét \(\Delta\)ACN vuông đỉnh C có trung tuyến CM (cmt) => CM = AM => \(\Delta\)CAM cân tại M
=> ^MAC = ^MCA. Mà ^MAC = ^DCA (Do AB//CD) nên ^MCA = ^DCA
Vậy nên CA là phân giác ^MCD (đpcm).