K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

A B C D M N

Qua C dựng đường thẳng song song với BD cắt đường thẳng AB tại điểm N.

Xét tứ giác DCNB có: CN // BD; BN // CD => Tứ giác DCNB là hình bình hành

=> DC = BN => (DC + AB)/2 = (BN + AB)/2 = AN/2 (1)

Ta có: M thuộc [AN]; AM = (DC + AB)/2                    (2)

(1); (2) => AM = AN/2 => M là trung điểm của AN  = >CM là trung tuyến \(\Delta\)ACN

Lại có: AC vuông góc BD; BD // CN => AC vuông góc CN (Qh //; vuông góc)

Xét \(\Delta\)ACN vuông đỉnh C có trung tuyến CM (cmt) => CM = AM => \(\Delta\)CAM cân tại M

=> ^MAC = ^MCA. Mà ^MAC = ^DCA (Do AB//CD) nên ^MCA = ^DCA 

Vậy nên  CA là phân giác ^MCD (đpcm).