chứng minh
\(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1.3.5.7.9...\left(2n-1\right)=\frac{\left[1.3.5.7.9....\left(2n-1\right)\right].\left[2.4.6.8...2n\right]}{2.4.6.8....2n}=\frac{1.2.3.4.5.6....2n}{\left(2.1\right).\left(2.2\right).\left(2.3\right)\left(2.4\right)....\left(2.n\right)}\)
=> \(1.3.5.7.9...\left(2n-1\right)=\frac{1.2.3.4.5.6....2n}{\left(2.2.2.....2\right).\left(1.2.3.4.....n\right)}=\frac{\left(1.2.3.4.....n\right)\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}{2^n.\left(1.2.3.4....n\right)}\)
=> \(1.3.5.7.9...\left(2n-1\right)=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n}\)
=> \(\frac{1.3.5.7.9...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}=\frac{1}{2^n}\)(đpcm)
Đặt A = 12 + 22 + 32 + 42 + ... + n2
A = 1 + (1 + 1).2 + (1 + 2).3 + (1 + 3).4 + ... + (1 + n - 1).n
A = 1 + 1.2 + 2 + 3 + 2.3 + 4 + 3.4 + ... + n + (n - 1).n
A = [1.2 + 2.3 + 3.4 + ... + (n - 1).n] + (1 + 2 + 3 + 4 + ... + n)
A = [1.2 + 2.3 + 3.4 + ... + (n - 1).n] + \(\frac{n.\left(n+1\right)}{2}\)
Đặt B = 1.2 + 2.3 + 3.4 + ... + (n - 1).n
3B = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + (n - 1).n.[(n + 1) - (n - 2)]
3B = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + (n - 1).n.(n + 1) - (n - 2).(n - 1).n
3B = (n - 1).n.(n + 1)
\(B=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)
\(A=\frac{n.\left(n+1\right)}{2}+\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)
\(A=\frac{3n.\left(n+1\right)+2.\left(n-1\right).n.\left(n+1\right)}{6}\)
\(A=\frac{n.\left(n+1\right).\left(3+2n-2\right)}{6}=\frac{n.\left(n+1\right).\left(2n+1\right)}{6}\left(đpcm\right)\)
a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)
\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)
\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)
cm = quy nạp
\(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\text{*}\right)\)
*Với n=1 thì (*) đúng
*)Giả sử (*) đúng với n=k khi đó (*) thành
\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)
Thật vậy cm \(n=k+1\) đúng hay
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Lại có: \(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\frac{6\left(k+1\right)^2}{6}\)
\(=\frac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}=\frac{\left(k+1\right)\left(2k^2+k+6k+6\right)}{6}\)
\(=\frac{\left(k+1\right)\left(2k^2+3k+4k+6\right)}{6}=\frac{\left(k+1\right)\left[\left(2k^2+3k\right)+\left(4k+6\right)\right]}{6}\)
\(=\frac{\left(k+1\right)\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Vậy (*) đúng hay ta có DPCM