K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

a) Ta có : \(\frac{2n-3}{n-1}=\frac{2n-2-1}{n-1}=\frac{2.\left(n-1\right)-1}{n-1}=2-\frac{1}{n-1}\)

Lập bảng ta có :

n-11-1
n20

b) Ta có : \(\frac{3n+1}{n-2}=\frac{3n-6+7}{n-2}=\frac{3.\left(n-2\right)+7}{n-2}=3+\frac{7}{n-2}\)

Lập bảng ta có :

n-21-17-7
n319-5

a) ĐKXĐ: \(n\ne3\)

Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)

\(\Leftrightarrow n-3-2⋮n-3\)

mà \(n-3⋮n-3\)

nên \(-2⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(-2\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{4;2;5;1\right\}\)

Vậy: \(n\in\left\{4;2;5;1\right\}\)

11 tháng 5 2021

dạ còn B,C,D nữa ạ

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

Đề bài yêu cầu gì?

5 tháng 4 2022

đề bài

22 tháng 2 2022

\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

3n-11-12-23-34-46-612-12
nloại01loạiloạiloạiloại-1loạiloạiloạiloại

 

c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

n-31-13-39-9
n426012-6

 

27 tháng 2 2023

Có đúng không

 

4 tháng 3 2022

giúp mik nhanh vs các bn ơiiiiii

:(

4 tháng 3 2022

-bạn tự lập bảng nhé 

a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

n-31-111-11
n4214-8

 

c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

6 tháng 7 2016

\(A=\frac{3n-9}{n-4}=\frac{3n-12+3}{n-4}=\frac{3\left(n-4\right)+3}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{3}{n-4}=3+\frac{3}{n-4}\)

Để p/s A có giá trị nguyên thì 3 chia hết cho n+4

=>n+4 E Ư(3)={-3;-1;1;3}

=>n E {-7;-5;-3;-1}

Vậy........

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3.\left(2n-1\right)+8}{2n-1}=\frac{3.\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B là số nguyên thì 8 chia hết cho 2n-1

Tới đây tương tự câu trên nhé

6 tháng 7 2016

Để A nguyên thì 3n - 9 chia hết n - 4

<=>  (3n - 12) + 3 chia hết n - 4

=>    3.(n - 4) + 3 chia hết n - 4

=>       3 chia hết n - 4

=>        n - 4 thuộc Ư(3)

=>       Ư(3) = {-1;1;-3;3}
Ta có: 

n - 4-11-33
n3517
6 tháng 7 2016

a, Ta có: \(\frac{3n+9}{n-4}\in Z\Leftrightarrow\frac{3n-12+21}{n-4}\in Z\Leftrightarrow\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}\in Z\Leftrightarrow3+\frac{21}{n-4}\in Z\)

\(\Leftrightarrow\frac{21}{n-4}\in Z\Leftrightarrow n-4\inƯ21\Leftrightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21;\right\}\)

\(\Leftrightarrow n\in\left\{-17;-3;1;3;4;7;11;25\right\}\)

b, Ta có: \(\frac{6n+5}{2n-1}\in Z\Leftrightarrow\frac{6n-3+8}{2n-1}\in Z\Leftrightarrow\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}\in Z\Leftrightarrow3+\frac{8}{2n-1}\in Z\Leftrightarrow\frac{8}{2n-1}\in Z\)

\(\Leftrightarrow2n-1\inƯ8\Leftrightarrow2n-1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Leftrightarrow n\in\left\{1;0\right\}\)  Vì \(n\in Z\)

13 tháng 11 2016

Đặt tính ra ta có: \(\left(3n+9\right):\left(n-4\right)=3\) dư 21

\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\in U\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bảng sau:

n-41-13-37-721-21
n537111-325-17

Vậy......

b) Ta tính được: \(\left(6n+5\right):\left(2n-1\right)=3\) dư 8

\(\Rightarrow A=Q+\frac{R}{B}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\in U\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng sau:

2n-11-12-24-48-8
n101.5 (loại)-0.5 (loại)2.5 (loại)-1.5 (loại)4.5 (loại)-3.5 (loại)

Vậy \(x\in\left\{0;1\right\}\)