Thực hiện phép tính đã chỉ ra:
\(a)\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{z{\rm{x}}}}\)
\(b)\frac{x}{{2{\rm{x}} - y}} + \frac{y}{{2{\rm{x}} + y}} + \frac{{3{\rm{x}}y}}{{{y^2} - 4{{\rm{x}}^2}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}a)\frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\left( {\frac{1}{{2{\rm{x}} + 1}} + \frac{1}{{2{\rm{x}} - 1}} + \frac{1}{{1 - 4{{\rm{x}}^2}}}} \right)\\ = \frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\frac{{2{\rm{x}} - 1 + 2{\rm{x}} + 1 - 1}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}{{\left( {4{\rm{x}} - 1} \right)\left( {4{\rm{x + 1}}} \right)}}.\frac{{4{\rm{x}} - 1}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}\\ = \frac{1}{{4{\rm{x}} + 1}}\\b)\left( {\frac{{x + y}}{{xy}} - \frac{2}{x}} \right).\frac{{{x^3}{y^3}}}{{{x^3} - {y^3}}}\\ = \frac{{x + y - 2y}}{{xy}}.\frac{{{x^3}{y^3}}}{{{x^3} - {y^3}}}\\ = \frac{{\left( {x - y} \right).{x^3}{y^3}}}{{xy\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}} = \frac{{{x^2}{y^2}}}{{{x^2} + xy + y{}^2}}\end{array}\)
\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right):\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{ - 3{\rm{x}}}}{{5{\rm{x}}{y^2}}}.\frac{{ - 12{\rm{x}}y}}{{5{y^2}}} = \frac{{36{{\rm{x}}^2}y}}{{25{\rm{x}}{y^4}}}\)
b) \(\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}:\frac{4{{\text{x}}^{2}}+4\text{x}+1}{4{{\text{x}}^{2}}+2\text{x}+1}=\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}.\frac{4{{\text{x}}^{2}}+2\text{x}+1}{4{{\text{x}}^{2}}+4\text{x}+1}\)
\(=\frac{\left( 2\text{x}-1 \right)\left( 2\text{x}+1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right)}{\left( 2\text{x}-1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right){{\left( 2\text{x}+1 \right)}^{2}}}=\frac{1}{2\text{x}+1}\).
\(a)\frac{{{x^2} - 3{\rm{x}} + 1}}{{2{{\rm{x}}^2}}} + \frac{{5{\rm{x}} - 1 - {x^2}}}{{2{{\rm{x}}^2}}} = \frac{{{x^2} - 3{\rm{x}} + 1 + 5{\rm{x}} - 1 - {x^2}}}{{2{{\rm{x}}^2}}} = \frac{{2{\rm{x}}}}{{2{{\rm{x}}^2}}}\)
\(b)\frac{y}{{x - y}} + \frac{x}{{x + y}} = \frac{{y\left( {x + y} \right) + x\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{xy + {y^2} + {x^2} - xy}}{{{x^2} - {y^2}}} = \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}\)
\(c)\frac{x}{{2{\rm{x}} - 6}} + \frac{9}{{2{\rm{x}}\left( {3 - x} \right)}} = \frac{x}{{2\left( {x - 3} \right)}} - \frac{9}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{{x^2}}}{{2{\rm{x}}\left( {x - 3} \right)}} - \frac{9}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{{x^2} - 9}}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{2{\rm{x}}\left( {x - 3} \right)}} = \frac{{x + 3}}{{2{\rm{x}}}}\)
a) \(y' = 2.3{{\rm{x}}^2} - \frac{1}{2}.2{\rm{x}} + 4.1 - 0 = 6{{\rm{x}}^2} - x + 4\).
b) \(y' = \frac{{{{\left( { - 2{\rm{x}} + 3} \right)}^\prime }.\left( {{\rm{x}} - 4} \right) - \left( { - 2{\rm{x}} + 3} \right).{{\left( {{\rm{x}} - 4} \right)}^\prime }}}{{{{\left( {{\rm{x}} - 4} \right)}^2}}}\)
\( = \frac{{ - 2\left( {{\rm{x}} - 4} \right) - \left( { - 2{\rm{x}} + 3} \right).1}}{{{{\left( {{\rm{x}} - 4} \right)}^2}}}\)
\( = \frac{{ - 2{\rm{x}} + 8 + 2{\rm{x}} - 3}}{{{{\left( {{\rm{x}} - 4} \right)}^2}}} = \frac{5}{{{{\left( {{\rm{x}} - 4} \right)}^2}}}\)
c) \(y' = \frac{{{{\left( {{x^2} - 2{\rm{x}} + 3} \right)}^\prime }\left( {{\rm{x}} - 1} \right) - \left( {{x^2} - 2{\rm{x}} + 3} \right){{\left( {{\rm{x}} - 1} \right)}^\prime }}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\)
\( = \frac{{\left( {2{\rm{x}} - 2} \right)\left( {{\rm{x}} - 1} \right) - \left( {{x^2} - 2{\rm{x}} + 3} \right).1}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\) \( = \frac{{2{{\rm{x}}^2} - 2{\rm{x}} - 2{\rm{x}} + 2 - {x^2} + 2{\rm{x}} - 3}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\)
\( = \frac{{{x^2} - 2{\rm{x}} - 1}}{{{{\left( {{\rm{x}} - 1} \right)}^2}}}\)
d) \(y' = {\left( {\sqrt 5 .\sqrt x } \right)^\prime } = \sqrt 5 .\frac{1}{{2\sqrt x }} = \frac{{\sqrt 5 }}{{2\sqrt x }} = \frac{5}{{2\sqrt {5x} }}\).
\(a)\frac{{3 - 2{\rm{x}}}}{{x - 1}} - \frac{{2 + 5{\rm{x}}}}{{x - 1}} = \frac{{3 - 2{\rm{x}} - \left( {2 + 5{\rm{x}}} \right)}}{{x - 1}} = \frac{{3 - 2{\rm{x}} - 2 - 5{\rm{x}}}}{{x - 1}} = \frac{{1 - 7{\rm{x}}}}{{x - 1}}\)
\(b)\frac{1}{{4{{\rm{x}}^2}y}} - \frac{1}{{6{\rm{x}}{y^2}}} = \frac{{3y}}{{12{{\rm{x}}^2}y{}^2}} - \frac{{2{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}} = \frac{{3y - 2{\rm{x}}}}{{12{{\rm{x}}^2}{y^2}}}\)
a) Ta có: \(\frac{5}{{2 - x}} = \frac{{ - 5}}{{x - 2}}\)
\({x^2} - 4{\rm{x}} + 4 = {\left( {x - 2} \right)^2}\)
\(MTC = \left( {x + 2} \right){\left( {x - 2} \right)^2}\)
Nhân tử phụ của x+2 là \({\left( {x - 2} \right)^2}\)
Nhân tử phụ của\({x^2} - 4{\rm{x}} + 4\) là \({\left( {x - 2} \right)^2}\)
Nhân tử phụ của x - 2 là (x+2)(x−2)
Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:
\(\begin{array}{l}\frac{1}{{x + 2}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{{x + 1}}{{{x^2} - 4{\rm{x - 4}}}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{5}{{2 - x}} = \frac{{ - 5\left( {x + 2} \right)\left( {x - 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\end{array}\)
b) Ta có: 3x+3y=3(x+y)
\({x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right)\)
\({x^2} + 2{\rm{x}}y + {y^2} = {\left( {x - y} \right)^2}\)
\(MTC = 3\left( {x + y} \right){\left( {x - y} \right)^2}\)
Nhân tử phụ của 3x+3y là: \({\left( {x - y} \right)^2}\)
Nhân tử phụ của \({x^2} - {y^2}\) là: 3(x−y)
Nhân tử phụ của \({x^2} + 2{\rm{x}}y + {y^2}\) là: 3(x+y)
Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:
\(\begin{array}{l}\frac{1}{{3{\rm{x}} + 3y}} = \frac{{{{\left( {x - y} \right)}^2}}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{2{\rm{x}}}}{{{x^2} - {y^2}}} = \frac{{6{\rm{x}}\left( {x - y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}} = \frac{{3\left( {{x^2} - xy + {y^2}} \right)\left( {x + y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\end{array}\)
\(a)\frac{x}{{x + y}}.\frac{{2{\rm{x}} + 2y}}{{3{\rm{x}}y}}\)
\(\begin{array}{l} = \frac{{2{{\rm{x}}^2} + 2{\rm{x}}y}}{{3{\rm{x}}y(x + y)}}\\ = \frac{{2{\rm{x}}(x + y)}}{{3{\rm{x}}y(x + y)}} = \frac{{2{\rm{x}}}}{{3{\rm{x}}y}}\end{array}\)
\(b)\frac{{3{\rm{x}}}}{{4{{\rm{x}}^2} - 1}}.\frac{{ - 2{\rm{x}} + 1}}{{2{{\rm{x}}^2}}}\)
\(\begin{array}{l} = \frac{{3{\rm{x}}( - 2{\rm{x}} + 1)}}{{2{{\rm{x}}^2}(4{{\rm{x}}^2} - 1)}}\\ = \frac{{ - 3{\rm{x}}}}{{2{{\rm{x}}^2}(2{\rm{x}} + 1)}}\end{array}\)
\(a)\frac{{5 - 3{\rm{x}}}}{{x + 1}} - \frac{{ - 2 + 5{\rm{x}}}}{{x + 1}} = \frac{{5 - 3{\rm{x - }}\left( { - 2 + 5{\rm{x}}} \right)}}{{x + 1}} = \frac{{5 - 3{\rm{x}} + 2 - 5{\rm{x}}}}{{x + 1}} = \frac{{7 - 8{\rm{x}}}}{{x + 1}}\)
\(b)\frac{x}{{x - y}} - \frac{y}{{x + y}} = \frac{{x\left( {x + y} \right) - y\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + xy - xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \frac{{{x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\)
\(\begin{array}{l}c)\frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{{x^3} + 1}} \\ = \frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ = \frac{{3\left( {{x^2} - x + 1} \right) - 2 - 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ = \frac{{3{{\rm{x}}^2} - 3{\rm{x}} + 3 - 2 - 3{\rm{x}}}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{3{{\rm{x}}^2} - 6{\rm{x}} + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\end{array}\)
\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right).\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{\left( { - 3{\rm{x}}} \right).\left( { - 5{y^2}} \right)}}{{5{\rm{x}}{y^2}.12{\rm{x}}y}} = \frac{1}{{4{\rm{x}}y}}\)
\(b)\frac{{{x^2} - x}}{{2{\rm{x}} + 1}}.\frac{{4{{\rm{x}}^2} - 1}}{{{x^3} - 1}} = \frac{{x\left( {x - 1} \right).\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}{{\left( {2{\rm{x}} + 1} \right).\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{x\left( {2{\rm{x}} - 1} \right)}}{{{x^2} + x + 1}}\)
\(a)\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{z{\rm{x}}}} = \frac{z}{{xyz}} + \frac{x}{{xyz}} + \frac{y}{{xyz}} = \frac{{z + x + y}}{{xyz}}\)
\(\begin{array}{l}b)\frac{x}{{2{\rm{x}} - y}} + \frac{y}{{2{\rm{x}} + y}} + \frac{{3{\rm{x}}y}}{{{y^2} - 4{{\rm{x}}^2}}}\\ = \frac{x}{{2{\rm{x}} - y}} + \frac{y}{{2{\rm{x}} + y}} - \frac{{3{\rm{x}}y}}{{4{{\rm{x}}^2} - {y^2}}}\\ = \frac{{x\left( {2{\rm{x}} + y} \right) + y\left( {2{\rm{x}} - y} \right) - 3{\rm{x}}y}}{{\left( {2{\rm{x}} - y} \right)\left( {2{\rm{x}} + y} \right)}}\\ = \frac{{2{{\rm{x}}^2} + xy + 2{\rm{x}}y - {y^2} - 3{\rm{x}}y}}{{\left( {2{\rm{x}} - y} \right)\left( {2{\rm{x}} + y} \right)}} = \frac{{2{{\rm{x}}^2} - {y^2}}}{{\left( {2{\rm{x}} - y} \right)\left( {2{\rm{x}} + y} \right)}}\end{array}\)