Không dùng máy tính hay bảng số hãy chứng minh rằng: sin 75 độ= \(\frac{\sqrt{6}+\sqrt{2}}{4}\)
Toán lớp 9 nha mọi người, cám ơn mọi người trước.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Có nhiều cách nhé. Với lớp 9 cô dùng cách này. Cô hướng dẫn nhé :)
Giả thiệt cho như hình vẽ. Gỉa sử AB = 1cm, khi đó do góc ADB = 30độ nên \(\frac{AB}{BD}=\frac{1}{2};\frac{AB}{AD}=\frac{\sqrt{3}}{3}\)
Vậy \(AC=AD+DC=AD+DB=2+\sqrt{3}\)
Vậy \(tan15=\frac{AB}{AC}=\frac{1}{2+\sqrt{3}}=2-\sqrt{3}\)
b. Dựa vào công thức : \(tan^215+1=\frac{1}{cos^215}\)
Từ biểu thức trên không thể có x = y
\(\sqrt{\left(2-\frac{1}{y}\right).\frac{1}{y}}=\sqrt{\left(2-\frac{1}{x}\right).\frac{1}{x}}\)
=> \(\left(2-\frac{1}{y}\right).\frac{1}{y}=\left(2-\frac{1}{x}\right).\frac{1}{x}\)
=> \(\frac{2}{y}-\frac{1}{y^2}=\frac{2}{x}-\frac{1}{x^2}\)
=> \(\frac{2}{x}-\frac{2}{y}=\frac{1}{x^2}-\frac{1}{y^2}\)
=> \(2.\left(\frac{1}{x}-\frac{1}{y}\right)=\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}-\frac{1}{y}\right)\)( # )
Với x = y
=> \(\frac{1}{x}=\frac{1}{y}\)
=> \(\frac{1}{x}-\frac{1}{y}=0\)
=> ( # ) luôn đúng
Với \(x\ne y\)
=> \(\frac{1}{x}-\frac{1}{y}\ne0\)
Chia cả hai vế của ( # ) cho \(\frac{1}{x}-\frac{1}{y}\)
=> 2 = \(\frac{1}{x}+\frac{1}{y}\)
Vậy với x, y thỏa mãn \(2=\frac{1}{x}+\frac{1}{y}\)hoặc x = y ( x, y > 0 ) thì \(\sqrt{\left(2-\frac{1}{y}\right).\frac{1}{y}}=\sqrt{\left(2-\frac{1}{x}\right).\frac{1}{x}}\)luôn đúng và với \(x\ne y\)thì biểu thức vẫn có thể đúng.
Vậy với biểu thức đúng thì x chưa chắc đã bằng y
Cám ơn Nguyễn Chí Thành
Bạn đúng rồi
Đúng là mk nghĩ thiếu thường hợp .
^.^
http://tailieu.tv/tai-lieu/phuong-phap-nhan-luong-lien-hop-giai-cac-bai-toan-ve-phuong-trinh-vo-ti-28140/
Vào link này mà xem
...................
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)