K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi K là trung điểm của cạnh AD.

ta có AD cố định nên điểm K cố định.

Trong ∆ ABD ta có:

IB = ID (tính chất hình bình hành)

KA = KD (theo cách vẽ)

nên KI là đường trung bình của  ∆ ABD

⇒ KI = 1/2 AB = 1/2.2 = 1 (cm) (tính chất đường trung bình của tam giác)

B và C thay đổi thì I thay đổi luôn cách điểm K cố định một khoảng không đổi nên I chuyển động trên (K; 1 cm)

28 tháng 1 2018

Gọi K là trung điểm của cạnh AD.

ta có AD cố định nên điểm K cố định.

Trong ∆ ABD ta có:

IB = ID (tính chất hình bình hành)

KA = KD (theo cách vẽ)

nên KI là đường trung bình của ∆ ABD

⇒ KI = \(\dfrac{1}{2}AB=\dfrac{1}{2}.2\) = 1 (cm) (tính chất đường trung bình của tam giác)

B và C thay đổi thì I thay đổi luôn cách điểm K cố định một khoảng không đổi nên I chuyển động trên (K ; 1 cm)


1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR  giao điểm hai đường chéo nằm trên 1 đường trong cố định2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động3. Cho (O,R) BC là dây cố định. A là  1 điểm di động trên (O,R). Lấy M đối xứng...
Đọc tiếp

1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR  giao điểm hai đường chéo nằm trên 1 đường trong cố định

2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động

3. Cho (O,R) BC là dây cố định. A là  1 điểm di động trên (O,R). Lấy M đối xứng với C qua trung điểm I của AB. Hỏi M di động trên đường nào khi A di động

4.  Cho A di chuyển trên (O,R) đường kính BC gọi M đối xứng với A qua B, H là hình chiếu của A trên BC, I là trung điểm HC

a. CMR M chuyển động trên (O,R) 1 đường thẳng tròn cố định 

b. CMR tam giác AHM  đồng dạng tam giác CIA

c. CMR MH vuông góc AI

d MH cắt (O) tại E và F đường thẳng AI cắt (O) tại G. CMR Tổng bình phương các cạnh  của tứ giác AEGF ko đổi

0
22 tháng 6 2019

Thật ra thì phải lấy kiến thức lớp 11 về phép tịnh tiến để giải bài này

Y
22 tháng 6 2019

Gọi E là điểm đối xứng với B qua A thì E cố định

+ \(\left\{{}\begin{matrix}AE=AB\\AE//CD\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AE=CD\\AE//CD\end{matrix}\right.\)

=> Tứ giác ACDE là hbh

=> DE = AC = 2cm

Do đó : điểm D di động trên đg tròn ( E, 2cm ) cố định