K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2023

Ta thấy: \(\left(x-y+3\right)^2\ge0\forall x;y\)

              \(\left|y-3\right|\ge0\forall y\)

\(\Rightarrow\left(x-y+3\right)^2+\left|y-3\right|\ge0\forall x;y\)

Mặt khác: \(\left(x-y+3\right)^2+\left|y-3\right|\le0\)

\(\Rightarrow\left(x-y+3\right)^2+\left|y-3\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+3\right)^2=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+3=0\\y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3+3=0\\y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

Khi đó, biểu thức \(\left(x-2y+6\right)^{10}+27\) trở thành:

\(\left(0-2\cdot3+6\right)^{10}+27\)

\(=\left(-6+6\right)^{10}+27\)

\(=27\)

#Urushi

5 tháng 9 2023

bạn viết rõ ra nhé

 

3 tháng 7 2021

Thay x=-8 và y=6 cào C ta được:

\(C=\dfrac{\left(-8\right)^3}{2}+\dfrac{\left(-8\right)^2.6}{4}+\dfrac{\left(-8\right).6^2}{6}+\dfrac{6^3}{27}\)\(=\dfrac{-512}{2}+\dfrac{384}{4}-\dfrac{288}{6}+\dfrac{216}{27}\)\(=-256+96-48+8=-200\)

3 tháng 7 2021

\(C=x^2\left(\dfrac{x}{2}+\dfrac{y}{4}\right)+y^2\left(\dfrac{x}{6}+\dfrac{y}{27}\right)=\left(-8\right)^2\left(-\dfrac{8}{2}+\dfrac{6}{4}\right)+6^2\left(-\dfrac{8}{6}+\dfrac{6}{27}\right)=-200\)

2 tháng 9 2017

X=2007 đúng 100%

22 tháng 6 2018

bài 4: Ta có \(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(x-y=y\Rightarrow x=2y\)

thay x=2y vào A ta đc :

A = \(\dfrac{x-y}{x+y}=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2018

Bài 1:

Ta có: \(x+y+z=0\Rightarrow z=-x-y\Rightarrow z^2=(-x-y)^2\)

\(\Rightarrow x^2+y^2-z^2=x^2+y^2=x^2+y^2-(-x-y)^2=-2xy\)

Hoàn toàn tương tự:

\(y^2+z^2-x^2=-2yz; z^2+x^2-y^2=-2xz\)

Do đó:

\(P=\frac{(x^2+y^2-z^2)(y^2+z^2-x^2)(z^2+x^2-y^2)}{16xyz}=\frac{(-2xy)(-2yz)(-2xz)}{16xyz}=\frac{-xyz}{2}\)

1 tháng 12 2018

a) ĐKXĐ : \(x+y\ne0\)

\(x^2-2y^2=xy\)

\(x^2-y^2-y^2-xy=0\)

\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)

\(\left(x+y\right)\left(x-2y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)

Với x - 2y = 0 ta có x = 2y

Thay x = 2y vào A ta có :

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

1 tháng 12 2018

a)

Ta có:

\(x^2-2y^2=xy\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=\left(x+y\right)\left(x-2y\right)=0\)

=>x-2y=0=>x=2y

Thế vào A rùi giải

10 tháng 8 2016

Bài 1:

\(A=x^2y-y+xy^2-x=\left(x^2y+xy^2\right)-\left(x+y\right)\\ =xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

Voqis x=-1;y=3 ta có:

\(A=\left(-1+3\right)\left(-1\cdot3-1\right)=2\cdot\left(-4\right)=-8\)

b) \(B=x^2y^2+xy+x^3+y^3=\left(x^2y^2+x^3\right)+\left(xy+y^3\right)\\ =x^2\left(y^2+x\right)+y\left(x+y^2\right)=\left(x+y^2\right)\left(x^2+y\right)\)

Với x=-1;y=3 ta có:

\(B=\left(-1+3^2\right)\left(-1^2+3\right)=8\cdot2=16\)

c) \(C=2x+xy^2-x^2y-2y=\left(2x-2y\right)+\left(xy^2-x^2y\right)\\ =2\left(x-y\right)+xy\left(y-x\right)=\left(x-y\right)\left(2-xy\right)\)

Với x=-1;y=3 ta có:

\(C=\left(-1-3\right)\left(2-\left(-1\right)\cdot3\right)=-4\cdot5=-20\)

d) phân tích tt