cho phân thức A= (3m+1)/(m-2)
- tìm m là số nguyên dương để A đạt GTLN
- với m>=3 . tìm GTLN của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a+5}{a-2}=\frac{\left(a-2\right)+5+2}{a-2}=\frac{\left(a-2\right)+7}{a-2}=\frac{7}{a-2}\)
Để M nguyên
\(\Leftrightarrow7⋮a-2\)
\(\Rightarrow a-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow a\in\left\{3;1;9;-5\right\}\)
Vậy...........................
p/s : câu a,b,d quên cách làm r :(
a) Để M là số nguyên.
=>n+4 chia hết cho n-2
=>n-2+6 chia hết cho n-2
=>6 chia hết cho n-2
=>n-2=Ư(6)=(-1,-2,-3,-6,1,2,3,6)
=>n=(1,0,-1,-4,3,4,5,8)
Vậy n=1,0,-1,-4,3,4,5,8 để M là số nguyên.
a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.
Tìm các giá trị của 2m+1 rồi tìm m
b) Theo đề bài => /m/<2 để /3m-1/<3
a)m-1 chia hết 2m+1
suy ra 2(m-1) chia hết cho 2m+1
\(\Rightarrow\)2m-2\(⋮\)2m+1
\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1
a: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-1}{x-2}\)
b: Để M đạt giá trị lớn nhất thì x-2=-1
hay x=1
c: Để M=3x thì \(\dfrac{-1}{x-2}=3x\)
\(\Leftrightarrow3x^2-6x+1=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot3\cdot1=36-12=24\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{6}}{6}=\dfrac{3-\sqrt{6}}{3}\\x_2=\dfrac{3+\sqrt{6}}{3}\end{matrix}\right.\)