K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

W
15 tháng 4 2020

dtydudjgbjbjbjvjkkdxkdiuryyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyykkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrrrrrrrrrrrrrrrrrrrrrrrrrrnmdchytfegttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttdyyyyyyyyyyyyyyyyyyyyyyyyrrrrrrrrrrrrrrrrrrrrrrrrr

15 tháng 4 2020

ASDFGHJKL;''\\\\\\\\\\\\\\09876212EFGNM,///////////////,HHVSZZCCCCCCCCCCCCCCBBBBBBBBBBBBBBMMMMMMMMMMMMJJXGGJBDU.LH7UJKI,M MYN YBRROP

IJUL[

-PIIGDAAQWRTYUIOLP;LNBF1954DGW22568997TVV32V456

26 tháng 8 2018

a) ĐK : \(x\ne1;x\ne2;x\ne3\)

\(K=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(\Leftrightarrow K=\left(\frac{x^2}{\left(x-3\right)\left(x-2\right)}+\frac{x^2}{\left(x-2\right)\left(x-1\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(\Leftrightarrow K=\left(\frac{2x^2}{\left(x-1\right)\left(x-3\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(\Leftrightarrow K=\frac{2x^2}{x^4+x^2+1}\)

26 tháng 8 2018

a, \(K=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right).\frac{\left(x-1\right)\left(x-2\right)}{x^4+x^2+1}\) 

\(=\left(\frac{x^2}{\left(x-3\right)\left(x-2\right)}+\frac{x^2}{\left(x-2\right)\left(x-1\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(=\left(\frac{x^2\left(x-1\right)+x^2\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(=\frac{x^3-x^2+x^3-3x^2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}.\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(=\frac{2x^3-4x^2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}.\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(=\frac{2x^3-4x^2}{\left(x-2\right)\left(x^4+x^2+1\right)}\)

\(=\frac{2x^2\left(x-2\right)}{\left(x-2\right)\left(x^4+x^2+1\right)}\)

\(=\frac{2x^2}{x^4+x^2+1}\)

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

4 tháng 10 2019

a/ ĐKXĐ : \(x\ge0;x\ne1\)

\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\frac{2}{x^2-2x+1}\)

\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right):\frac{2}{\left(x-1\right)^2}\)

\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\frac{x-2\sqrt{x}+\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-1\right)}{2\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=-\sqrt{x}\left(x-1\right)\)

Vậy...

b/ Ta có :

\(P>0\)

\(\Leftrightarrow-\sqrt{x}\left(x-1\right)>0\)

\(\Leftrightarrow\sqrt{x}\left(x-1\right)< 0\)

\(\sqrt{x}\ge0\)

\(\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ

Vậy \(0< x< 1\) thì P > 0

c/ Ta có :

\(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) thỏa mãn \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

Thay vào P rồi bạn tự tính ra nhé :>

Tham khảo nhé :

Cho a b 0 và 3a + 5b = 12,Tìm GTLN của P = ab,Cho a b c 0 và abc = 1,Chứng minh (a + 1)(b + 1)(c + 1) = 8,Q = a^2 + b^2 + c^2,Toán học Lớp 8,bà i tập Toán học Lớp 8,giải bà i tập Toán học Lớp 8,Toán học,Lớp 8

28 tháng 7 2019

ê P ở đâu mà bảo người ta tham khảo?

13 tháng 12 2019

Ta có:

\(I=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|=\left(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\)

\(=\left(\left|x+\frac{1}{2}\right|+\left|-x-\frac{1}{4}\right|\right)+\left|x+\frac{1}{3}\right|\ge\left|x+\frac{1}{2}-x-\frac{1}{4}\right|+\left|x+\frac{1}{3}\right|=\frac{1}{4}+\left|x+\frac{1}{3}\right|\ge\frac{1}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)\left(-x-\frac{1}{4}\right)\ge0\\x+\frac{1}{3}=0\end{cases}}\Leftrightarrow x=-\frac{1}{3}\)

Vậy min I = 1/4 đạt tại x = -1/3.

AH
Akai Haruma
Giáo viên
12 tháng 8 2017

Lời giải:

\(\bullet\)Nếu \(x\geq \frac{1}{2}\Rightarrow K=x-\frac{1}{2}+\frac{3}{4}-x=\frac{1}{4}\)

\(\bullet\) Nếu \(x<\frac{1}{2}\Rightarrow K=\frac{1}{2}-x+\frac{3}{4}-x=\frac{5}{4}-2x\)

\(x<\frac{1}{2}\Rightarrow \frac{5}{4}-2x>\frac{5}{4}-1=\frac{1}{4}\)

Do đó \(K_{\min}=\frac{1}{4}\)

Hàm hiển nhiên không có max. Xét hàm \(\frac{5}{4}-2x\), với giá trị của \(x<\frac{1}{2}\), càng nhỏ thì $K$ càng lớn đến dương vô cùng.

6 tháng 10 2017

TH1:Nếu x-\(\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

\(\Rightarrow\)K=\(\left|\dfrac{1}{2}-\dfrac{1}{2}\right|+\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)

TH2:Nếu x-\(\dfrac{1}{2}>0\Rightarrow x>\dfrac{1}{2}\Rightarrow\left|x-\dfrac{1}{2}\right|=x-\dfrac{1}{2}\)

\(\Rightarrow K=x-\dfrac{1}{2}+\dfrac{3}{4}-x=\dfrac{1}{4}\)

TH3:Nếu \(x-\dfrac{1}{2}< 0\Rightarrow x< \dfrac{1}{2}\Rightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{1}{2}-x\)

\(\Rightarrow K=\dfrac{1}{2}-x+\dfrac{3}{4}-x\)

\(\Rightarrow K=\dfrac{5}{4}-2x< \dfrac{1}{4}\)

Vậy Max K=\(\dfrac{1}{4}\Leftrightarrow x\ge\dfrac{1}{2}\)

9 tháng 7 2017

|x-1/2| =x-1/2 khi x >= 1/2

=> Min K =1/4 khi x>=1/2

không có max