K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

A B C H M

a) Do AM là trung tuyến nên BM = MC

Ta có :  \(HC-HB-2HM\)

\(=HM+MC-HB-HM-HM\)

\(=MC-HB-HM\)

\(=MC-\left(HB+HM\right)\)

\(=MC-MB=0\)

\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)

b) Xét  \(\Delta AHM\)có  \(\tan a=\frac{HM}{AH}\)

Xét  \(\Delta AHC\)có  \(\cot C=\frac{HC}{AH}\)

Xét  \(\Delta AHB\)có  \(\cot B=\frac{HB}{AH}\)

Ta có :  \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)

Mà  \(HC-HB=2HM\)( câu a )

\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)

Vậy ...

28 tháng 8 2020

\(Ta\)\(có\)\(:\)

\(tana\)\(=\frac{HM}{AH}\)

\(\Rightarrow2\)\(tana\)\(=\frac{2HM}{AH}\)\(=\frac{CH-BH}{AH}\)\(=\frac{CH}{AH}\)\(-\frac{BH}{AH}\)

\(\Rightarrow cot\)\(C\)\(-\)\(cot\)\(B\)

\(\Rightarrow\)\(tana\)\(=\frac{cotC-cotB}{2}\)

19 tháng 9 2017

Đáp án D

Do tam giác ABC vuông tại A có đường trung tuyến AM ứng với cạnh huyền nên:

11 tháng 8 2016

chj linh còn on 0 ra em bảo

có cái này hay lắm

11 tháng 8 2016

chú làm j đấy

7 tháng 7 2018

Gọi AH là đường cao của tam giác ABC (H thuộc BC)

Ta có : cot B=\(\dfrac{BH}{AH}\);cot C= \(\dfrac{CH}{AH}\) . Theo giả thiết : cot B=3 cot C ⇒ BH = 3CH

Mà BH + CH = BC⇒ BC= 4CH⇒ CH= \(\dfrac{BC}{4}\) = \(\dfrac{2CM}{4}\) = \(\dfrac{CM}{2}\)

Vậy CH = \(\dfrac{1}{2}\) CM

Ta cũngcó: BH = BM + MH = 2CH + MH = 3CH ⇒ MH = CH

Do đó AH là đường trung trực của CM => AC = AM (đpcm)

Hình bạn tự vẽ nha máy mình không vẽ được hình học

Chúc bạn mùa hè vui vẻ

11 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

=>ADHE là hình chữ nhật

b: Vì ADHE là hình chữ nhật

nên AH=DE(1)

Xét ΔAHM vuông tại H có AM là cạnh huyền

nên AH<=AM(2)

Từ (1) và (2) suy ra DE<=AM

Dấu '=' xảy ra khi H trùng với M

c: AEHD là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{ACB}\right)\)

nên \(\widehat{AED}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB

Ta có: MA=MC

=>ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: \(\widehat{AED}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}\)

\(=90^0\)

=>DE\(\perp\)AM