K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2022

chịu hoi =))))))

 

15 tháng 6 2022

em mới học lớp 7 hà

năm nay lên lớp 8 =)))))

3 tháng 12 2021

Ta có \(\widehat{A}=90^0\Rightarrow\Delta ABC\) vuông tại \(A\)

\(a,\widehat{C}=90^0-\widehat{B}=30^0\\ AC=\tan B\cdot AB=\tan60^0\cdot8=8\sqrt{3}\left(cm\right)\\ BC=\dfrac{AB}{\sin C}=\dfrac{8}{\sin30^0}=16\left(cm\right)\\ b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot8\cdot8\sqrt{3}=32\sqrt{3}\left(cm^2\right)\)

25 tháng 7 2017

Bạn kể thêm đường cao và đặt ẩn là làm ra

14 tháng 7 2016

Ta có: AC2 = AB2 + BC2 - 2AB.BC.cos(ABC) 
<=> 142 = 162 + BC2 -2.16.BC.cos(60) 
<=> BC2 - 16BC + 60 = 0 
<=> BC = 6 hoặc BC = 10 
Thoe bất đẳng thức tam giác thì car2 trường hợp trên đều thỏa mãn
Vậy BC = 6 hoặc BC = 10

NV
26 tháng 12 2022

Áp dụng định lý hàm cosin:

\(AC=\sqrt{AB^2+BC^2-2AB.BC.cosB}=\sqrt{2^2+3^2-2.2.3.cos60^0}=\sqrt{2}\)

Diện tích tam giác:

\(S=\dfrac{1}{2}AB.BC.sinB=\dfrac{1}{2}.2.3.sin60^0=\dfrac{3\sqrt{3}}{2}\)

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
27 tháng 7 2018

Đồng chí tự vẽ hình nhé.

Kẻ \(AD\perp BC=\left\{D\right\}\)

a, \(\Delta ABD\)có: \(\widehat{ADB}=90^o\)

\(\Rightarrow AD=AB.\sin B\Leftrightarrow AD=16.\sin30=8\sqrt{3}\left(cm\right)\)

\(\Delta ABD\)có: \(\widehat{ADB}=90^o\)

\(\Rightarrow AB^2=AD^2+BD^2\)(định lý Py-ta-go)

hay \(16^2=\left(8\sqrt{3}\right)^2+BD^2\)

\(BD^2=64\)

\(BD=8\left(cm\right)\)

\(\Delta ADC\)có: \(\widehat{ADC}=90^o\)

\(\Rightarrow AC^2=AD^2+CD^2\)(định lý Py-ta-go)

hay \(14^2=\left(8\sqrt{3}\right)^2+CD^2\)

\(CD^2=4\)

\(CD=2\left(cm\right)\)

Ta có: \(BC=CD+BD=2+8=10\left(cm\right)\)

b, \(S_{\Delta ABC}=\frac{AD.BC}{2}=\frac{8\sqrt{3}.10}{2}=40\sqrt{3}\left(cm^2\right)\)

Thật sự tui không biết mình có làm đúng không, sai thì nhớ bảo nhá