bài 3:hãy chứng tỏ rằng các phân số sau bằng nhau:
A, 1/3;34000-68/102000-204
B,209/305;209209/305305;209209209/305305305;209209209209/305305305305
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có 143/363 = 13/33
=> 13/33 = 143/363
b)Có 12/27 = 4/9
1212/2727 = 4/9
=> 12/27 = 1212/2727
a) Ta có: \(\dfrac{13}{33}=\dfrac{143}{363}\)
Mà \(\dfrac{143}{363}=\dfrac{143}{363}\)
Vậy \(\dfrac{13}{33}=\dfrac{143}{363}\)
b) Ta có: \(\dfrac{12}{27}=\dfrac{1212}{2727}\)
Mà \(\dfrac{1212}{2727}=\dfrac{1212}{2727}\)
Vậy \(\dfrac{12}{27}=\dfrac{1212}{2727}\)
a: Vì n+2 và n+3 là hai số tự nhiên liên tiếp
nên n+2 và n+3 là hai số nguyên tố cùng nhau
b) gọi d = ƯCLN(2n + 3; 3n + 5)
--> 3(2n + 3) và 2(3n + 5) chia hết cho d
--> (6n + 10) - (6n + 9) chia hết cho d
--> 1 chia hết cho d
--> d = 1
--> 2n + 3 và 3n + 5 nguyên tố cùng nhau
à mà bạn ơi, bạn có thể cho mình biết tại sao 3(2n + 3) lại = (6n + 10) không nhỉ?
Bài 1:
\(0,0\left(8\right)=\frac{1}{10}\cdot0,\left(8\right)=\frac{1}{10}\cdot0,\left(1\right)\cdot8=\frac{4}{5}\cdot\frac{1}{9}=\frac{4}{45}\)
\(0,1\left(2\right)=0,1+0,0\left(2\right)=\frac{1}{10}+\frac{1}{10}\cdot0,\left(2\right)=\frac{1}{10}+\frac{1}{10}\cdot0,\left(1\right)\cdot2=\frac{1}{10}+\frac{1}{5}\cdot\frac{1}{9}=\frac{1}{10}+\frac{1}{45}=\frac{11}{90}\)
\(0,1\left(23\right)=0,1+0,\left(23\right)=\frac{1}{10}+0,\left(01\right)\cdot23=\frac{1}{10}+\frac{1}{99}\cdot23=\frac{1}{10}+\frac{23}{99}=\frac{329}{990}\)
Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)
Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản
Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)
Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)
Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.
25/53=25*101/53*101=2525/5353
25/53=25*1001/53*10101=252525/535353
=)25/53=2525/5353=252525/535353
y b) tuong tu nhe
duyet nha
a ) 3/5;33/55;333/555
33:11/55:11=3/5 ; 333:111/555:111=3/5
b)101/103;101101/103103
101101:1001/103103:1001=101/103
\(a,\) Gọi 2 số đó là \(2n+1;2n+3\left(n\in N\right)\)
Gọi \(d=ƯCLN\left(2n+1,2n+3\right)\)
\(\Rightarrow2n+1⋮d;2n+3⋮d\\ \Rightarrow2n+3-2n-1⋮d\\ \Rightarrow2⋮d\)
Mà \(d\) lẻ nên \(d=1\)
Vậy \(ƯCLN\left(2n+1,2n+3\right)=1\left(đpcm\right)\)
\(b,\) Gọi \(d=ƯCLN\left(2n+5,3n+7\right)\)
\(\Rightarrow2n+5⋮d;3n+7⋮d\\ \Rightarrow2\left(3n+7\right)-3\left(2n+5\right)⋮d\\ \Rightarrow-1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+5,3n+7\right)=1\left(đpcm\right)\)