Cho \(x=\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)
Tính \(y=x^3-3x+1987\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{\sqrt{2}}=\frac{1+\sqrt{7}}{2+\sqrt{8+2\sqrt{7}}}+\frac{1-\sqrt{7}}{2-\sqrt{8-2\sqrt{7}}}\)
\(=\frac{1+\sqrt{7}}{2+1+\sqrt{7}}+\frac{1-\sqrt{7}}{2-\sqrt{7}+1}\)
\(=\frac{1+\sqrt{7}}{3+\sqrt{7}}+\frac{1-\sqrt{7}}{3-\sqrt{7}}\)
=\(\frac{\left(1+\sqrt{7}\right)\left(3-\sqrt{7}\right)+\left(1-\sqrt{7}\right)\left(3+\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)
\(=\frac{-8}{2}=-4\)
\(\Rightarrow A=-4\sqrt{2}\)
\(x^3=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+3x\)
\(\Leftrightarrow x^3-3x=\frac{1+\left(4-\sqrt{15}\right)^2}{4-\sqrt{15}}=8\)
\(\Rightarrow y=8+2019=2027\)
\(x=\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)
<=> \(x^3=\frac{1}{4-\sqrt{15}}+3\left(\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\right)\left(\frac{1}{\sqrt[3]{4-\sqrt{15}}}.\sqrt[3]{4-\sqrt{15}}\right)\)
\(+4-\sqrt{15}\)
<=> \(x^3=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+3x\)
<=> \(x^3-3x+2006=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+2006\)
<=> \(x^3-3x+2006=\frac{4+\sqrt{15}}{16-15}+4-\sqrt{15}+2006\)
<=> \(x^3-3x+2006=2014\)
\(x=\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)
\(\Leftrightarrow x^3=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+3\sqrt[3]{\sqrt[3]{\frac{1}{4-\sqrt{5}}}.\sqrt[3]{4-\sqrt{5}}}.x\)
\(=4+\sqrt{15}+4-\sqrt{15}+3x=8+3x\)
=>y=3x+8-3x+1987
=1995