So sánh A=(2^3+1)(3^3+1)...(1000^3+1)/(2^3-1)(3^3-1)...(100^3-1)
với B=1,5
Giúp mình với,Cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(A=1-\frac{1}{2^{50}}
a) Vì từ (-1) đến (-2020) có 2020 số hạng nên tích \(\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-2020\right)\) sẽ là số dương vì đây là tích của những số âm có số số hạng là số chẵn
hay \(\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-2020\right)>0\)
b)
Vì từ (-1) đến (-2021) có 2021 số hạng nên tích \(\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-2021\right)\) sẽ là số âm vì đây là tích của những số âm có số số hạng là số lẻ
hay \(\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-2021\right)< 0\)
Đặt a=1000^2012 thì \(A=\frac{a+2}{a-1}\) ; \(B=\frac{a}{a-3}\)
Xét \(A-B=\frac{a+2}{a-1}-\frac{a}{a-3}=\frac{\left(a+2\right)\left(a-3\right)-a\left(a-1\right)}{\left(a-1\right)\left(a-3\right)}\)
\(=\frac{a^2-a-6-a^2+a}{\left(a-1\right)\left(a-3\right)}=\frac{-6}{\left(a-1\right)\left(a-3\right)}\)
Do \(a>1;a>3\) nên \(\left(a-1\right)\left(a-3\right)>0\Leftrightarrow A-B< 0\)
Do đó \(A>B\)
ta có
\(B=1+\left(1-\frac{1}{2}\right)+..+\left(1-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=A\)
Vậy A=B
A=\(\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}...\frac{1-100^2}{100^2}\)
trong biểu thức trên có 99 số âm nên tích sẽ âm nên ta có thể viết lại như sau:
A=-\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\),
Chú ý: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
do vậy: A=-\(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{99.101}{100^2}=\frac{1.2.3...100.101}{2^2.3^2...100^2}=\frac{-101}{100!}>\frac{-101}{2.101}=\frac{-1}{2}\)
Vậy A>\(-\frac{1}{2}\)
b) Đặt \(C=\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{1000}}\)
\(\frac{1}{4}A=\frac{1}{4^2}+\frac{1}{4^3}+.......+\frac{1}{4^{1001}}\)
\(A-\frac{1}{4}A=\left(\frac{1}{4^2}-\frac{1}{4^2}\right)+\left(\frac{1}{4^3}-\frac{1}{4^3}\right)+.....+\frac{1}{4}-\frac{1}{4^{1001}}\)
\(\frac{3}{4}A=\frac{1}{4}-\frac{1}{4^{1001}}\)
Đến đây Đặt \(\frac{3}{4}B=\frac{1}{4}\)
Ta có: \(\frac{3}{4}A