tìm các số m nguyên thoả mãn
(m+1)(m2 +2m) là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
ĐỀ SAI NHÉ,PHẢI LÀ (M,N)=1 THÔI
Dễ dàng CM được tính chất sau: 1 số chính phương chia hết cho số nguyên tố p thì chia hết cho \(p^2\)
Quay lại với bài này:
Đặt: \(\hept{\begin{cases}m=p_1.p_2...p_i\\n=q_1.q_2...q_j\end{cases}},p_k,q_l\)là các số nguyên tố và do (m,n)=1 => \(p_k\)bất kỳ khác \(q_l\)
Áp dụng trực tiếp tính chất trên ta => m,n là số chính phương
\(k^2=\left(m+1\right)\left(m^2+2m\right)\) là số chính phương
\(\Rightarrow k^2=m\left(m+1\right)\left(m+2\right)\ge0\)
Lập bảng xét dấu
\(\Rightarrow\left[{}\begin{matrix}-2\le m\le0\\m>0\end{matrix}\right.\)
\(TH1:\) \(-2\le m\le0\Rightarrow m\in\left\{-2;-1;0\right\}\) thỏa mãn \(k^2=0\ge0\)
\(TH2:\) \(m>0\)
\(k^2=\left(m+1\right)\left(m^2+2m\right)\)
\(d=UC\left(m+1;m^2+2m\right)\)
\(\Rightarrow\left\{{}\begin{matrix}m+1⋮d\\m^2+2m⋮d\end{matrix}\right.\)
\(\Rightarrow m^2+2m-2\left(m+1\right)⋮d\)
\(\Rightarrow m^2+2m-2m-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\)
\(\Rightarrow\left(m+1\right)\left(m^2+2m\right)\) là số chính phương khi chúng là số chính phương.
Ta lại có :
\(\left(m+1\right)\left(m^2+2m\right)=m\left(m+1\right)\left(m+2\right)\) là tích của 3 số liên tiếp nhau không phải là số chính phương khi m>0
Vậy \(m\in\left\{-2;-1;0\right\}\) thỏa mãn đề bài