K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023

\(A=\left(x-\dfrac{1}{4}\right)^4+\left|x-2y\right|+1\)

vì \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^4\ge0,\forall x\\\left|x-2y\right|\ge0,\forall x;y\end{matrix}\right.\)

\(\Rightarrow A=\left(x-\dfrac{1}{4}\right)^4+\left|x-2y\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi

\(\left\{{}\begin{matrix}x-\dfrac{1}{4}=0\\x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{x}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{1}{8}\end{matrix}\right.\)

Vậy \(GTNN\left(A\right)=1\left(tạix=\dfrac{1}{4};y=\dfrac{1}{8}\right)\)

26 tháng 8 2023

Ta có:

(x - 1/4)⁴ ≥ 0 với mọi x ∈ R

(x - 2y)² ≥ 0 với mọi x, y ∈ R

(x - 1/4)⁴ + (x - 2y)² ≥ 0 với mọi x, y ∈ R

(x - 1/4)⁴ + (x - 2y)² + 1 ≥ 1 với mọi x, y ∈ R

Vậy GTNN của A là 1 khi x = 1/4 và y = 1/8

3 tháng 9 2021

Từ gt ta có x^2+y^^2=xy+1

=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2

=(xy+1)2-2x2y2-x2y2

=x2y2+xy+1-3x2y2=-2x2y2+xy+1

=......

NV
6 tháng 9 2021

\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)

\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)

\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)

\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)

Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)

\(P=f\left(t\right)=-2t^2+2t+1\)

\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)

\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)

2 tháng 10 2016

a) |x+3/4| >/ 0 

|x+3/4| + 1/2 >/ 1/2 

MinA= 1/2  <=>  x+3/4 =0 hay x= -3/4

b) 2|2x-4/3|  >/  0 

2|2x-4/3| -1 >/ -1

Min= -1 <=>  2|2x-4/3| = 0 hay x=2/3

Bài tiếp théo:

a) -2|x+4| \< 0 

-2|x+4| +1 \<  1

MaxA=1  <=> -2|x+4| = 0 hay = -4

b) -3|x-5|   \<  0

-3|x-5| + 11/4  \<  11/4 

MaxB=11/4  <=>  -3|x-5| = 0 hay x=-5  

2:

|x+4|>=0

=>-|x+4|<=0

=>B<=11

Dấu = xảy ra khi x=-4

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8