Trong mặt phẳng tọa độ Oxy cho A (4;5), B(1;-1), C(4;-4), D(7;-1) (vẽ hình nhé)
a) Viết phương trình đường thẳng AB, CD, DA
b) Tính chu vi tứ giác ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(2;-5\right)\)
Ta có C ∈ O x nên C(c; 0) và C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .
Tam giác ABC vuông tại C nên C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0
⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .
Chọn B.
Ta có C ∈ O x nên C(c, 0) và C A → = − 2 − c ; 4 C B → = 8 − c ; 4 .
Tam giác ABC vuông tại C nên C A → . C B → = 0 ⇔ − 2 − c . 8 − c + 4.4 = 0
⇔ c 2 − 6 c = 0 ⇔ c = 6 → C 6 ; 0 c = 0 → C 0 ; 0 .
Chọn B.
Để viết phương trình đường thẳng AB, ta cần tìm được độ dốc và điểm qua của đường thẳng. Để tính chu vi tứ giác ABCD, ta cần tính độ dài các cạnh và tổng các cạnh.
a) Để viết phương trình đường thẳng AB, ta cần tính độ dốc và điểm qua của đường thẳng. Để tính độ dốc, ta sử dụng công thức: m = (y2 - y1) / (x2 - x1), với (x1, y1) và (x2, y2) là hai điểm trên đường thẳng. Ta có A(4, 5) và B(1, -1), áp dụng công thức, ta tính được độ dốc của đường thẳng AB là m = (5 - (-1)) / (4 - 1) = 2.
Để tìm điểm qua của đường thẳng AB, ta có thể sử dụng một trong hai điểm đã cho. Ví dụ, ta sử dụng điểm A(4, 5). Áp dụng công thức: y - y1 = m(x - x1), ta có phương trình đường thẳng AB là y - 5 = 2(x - 4).
Tương tự, để viết phương trình đường thẳng CD, ta tính độ dốc và điểm qua của đường thẳng. Ta có C(4, -4) và D(7, -1), áp dụng công thức, ta tính được độ dốc của đường thẳng CD là m = (-1 - (-4)) / (7 - 4) = 1.
Để tìm điểm qua của đường thẳng CD, ta có thể sử dụng một trong hai điểm đã cho. Ví dụ, ta sử dụng điểm C(4, -4). Áp dụng công thức: y - y1 = m(x - x1), ta có phương trình đường thẳng CD là y - (-4) = 1(x - 4).
b) Để tính chu vi tứ giác ABCD, ta cần tính độ dài các cạnh và tổng các cạnh. Ta có A(4, 5), B(1, -1), C(4, -4), D(7, -1). Để tính độ dài cạnh AB, ta sử dụng công thức khoảng cách giữa hai điểm: AB = √((x2 - x1)^2 + (y2 - y1)^2). Áp dụng công thức, ta tính được AB = √((1 - 4)^2 + (-1 - 5)^2) = √((-3)^2 + (-6)^2) = √(9 + 36) = √45.
Tương tự, ta tính được CD = √((7 - 4)^2 + (-1 - (-4))^2) = √(3^2 + 3^2) = √(9 + 9) = √18.
Để tính chu vi tứ giác ABCD, ta cộng tổng độ dài các cạnh: chu vi = AB + BC + CD + DA = √45 + BC + √18 + DA.
Tuy nhiên, để tính độ dài cạnh BC và DA, cần có thêm thông tin về các điểm trên đường thẳng BC và DA. Vì vậy, để tính chu vi tứ giác ABCD, cần có thêm thông tin.