Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE = AC.AM và An lần lượt là các đường trung tuyến của Tam giác bác và đe a) bm=dn b) chứng minh góc bam=dan c) chứng minh góc mad kề bù vs dan suy ra m,a,n thằng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Có: \(AD=AB;AE=AC\)
=> \(\frac{AD}{AB}=1;\frac{AE}{AC}=1\)
=> \(\frac{AD}{AB}=\frac{AE}{AC}=1\)
Áp dụng định lí Talet đảo ta được:
=> DE // BC.
=> \(NDA=ABM\) (2 góc ở vị trí so le trong)
Xét tam giác ABM và tam giác ADN có:
\(\hept{\begin{cases}AB=AD\left(gt\right)\\ABM=ADN\left(cmt\right)\\BM=DN\left(gt\right)\end{cases}}\)
=> Tam giác ABM = Tam giác ADN (cgc)
=> TA CÓ ĐPCM.
b) Do Tam giác ABM = Tam giác ADN (cmt)
=> \(BAM=DAN\)
Áp dụng định lí Talet khi BC // DE ta được:
=> \(\frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}\)
Mà: \(\frac{AD}{AB}=\frac{AE}{AC}=1\left(cmt\right)\)
=> \(\frac{DE}{BC}=1\Rightarrow DE=BC\)
Mà: \(BM=DN\left(gt\right)\Rightarrow NE=MC\)
Khi đó, CMTT: Tam giác AMC = Tam giác ANE (cgc)
=> \(MAC=NAE\)
Ta có: \(BAC+ABC+ACB=180\) (ĐỊNH LÍ TỔNG 3 GÓC TRONG TAM GIÁC)
=> \(BAM+MAC+ABC+ACB=180\) (1)
Mà: E, A, C là 3 điểm thẳng hàng
=> góc EAB là góc ngoài của tam giác ABC
=> \(EAB=ABC+ACB\) (2)
Và: \(MAC=EAN\left(cmt\right)\) (3)
TỪ (1); (2) VÀ (3) TA ĐƯỢC:
=> \(BAM+NAE+BAE=180\)
=> \(NAM=180\)
=> 3 điểm M, N, A thẳng hàng.
VẬY TA CÓ ĐPCM.
a) xét \(\Delta ADE\)VÀ \(\Delta ABC\)CÓ
\(AD=AB\left(gt\right);\widehat{DAE}=\widehat{BAC}\left(Đ^2\right);AE=AC\left(gt\right)\)
=> \(\Delta ADE\)=\(\Delta ABC\)(c-g-c)
=> \(\widehat{ADE}=\widehat{ABC}\)( hai góc tương ứng ) hay \(\widehat{ADN}=\widehat{ABM}\)
xét \(\Delta ABM\)VÀ \(\Delta ADN\)CÓ
\(BM=DM\left(gt\right);\widehat{ADN}=\widehat{ABM}\left(cmt\right);AB=AD\left(gt\right)\)
=>\(\Delta ABM\)=\(\Delta ADN\)(c-g-c)
b tối tớ suy nghỉ
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: AM=ED/2
AN=BC/2
mà ED=BC
nên AM=AN
a)
Sửa đề: ΔABM=ΔADN
Xét ΔAED và ΔACB có
AE=AC(gt)
\(\widehat{EAD}=\widehat{CAB}\)(hai góc đối đỉnh)
AD=AB(gt)
Do đó: ΔAED=ΔACB(c-g-c)
⇒\(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)
hay \(\widehat{ADN}=\widehat{ABM}\)
Xét ΔADN và ΔABM có
DN=BM(gt)
\(\widehat{ADN}=\widehat{ABM}\)(cmt)
AD=AB(gt)
Do đó: ΔADN=ΔABM(c-g-c)
b) Ta có: ΔADN=ΔABM(cmt)
nên \(\widehat{DAN}=\widehat{BAM}\)(hai góc tương ứng)
mà \(\widehat{BAM}+\widehat{DAM}=180^0\)(hai góc kề bù)
nên \(\widehat{DAN}+\widehat{DAM}=180^0\)
\(\Leftrightarrow\widehat{NAM}=180^0\)
hay M,A,N thẳng hàng(đpcm)
1: Xét tứ giác BCDE có
A là trung điểm của BD
A là trung điểm của CE
Do đó; BCDE là hình bình hành
Suy ra: BC//DE
2: AH\(\perp\)BC
mà BC//DE
nên \(AH\perp\)DE
mà AK\(\perp\)DE
và AH,AK có điểm chung là A
nên H,A,K thẳng hàng
Mình thấy đề sai rồi vì giả thiết đã cho N thuộc ED nên E, N, D thẳng hàng.
Mình sửa lại đề là chứng minh M, A, N thẳng hàng.
Ta dễ dàng chứng minh tam giác ABC = tam giác ADE ( c - g - c)
=> BC = DE ( 2 cạnh tương ứng)
Ta chứng minh tam giác ABM = tam giác ADN có:
AB = AD (gt)
BM = DN (gt)
góc ABM = góc ADN ( tam giác ABC = tam giác ADE)
=> góc BAM = góc DAN ( 2 góc tương ứng)
Mà 2 góc này nằm ở vị trí đối đỉnh nên M, A, N thẳng hàng.
cái đó đã chứng minh rồi ạ bây h phải chứng minh E,N,D thẳng hàng p ạ