Cho x y là 2 đại lượng tỉ lệ nghịch
a x1.y1=45,x2=9 tính y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x và y đại lượng tỉ lệ nghịch
x1x2x1x2=y2y1y2y1hay x1 và x2 ta có:
2323=y2y1y2y1⇒y13y13=y22y22
Mà y122+y222=52
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
y13y13=y22y22=y12+y2232+22y12+y2232+22=52135213=4
⇒y13y13=4⇒y1=12
⇒y22y22=4⇒y2=8
Bài 2:
a: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
=>x=5k; y=3k
xy=1500
nên \(k^2=100\)
Trường hợp 1: k=10
=>x=50; y=30
Trường hợp 2: k=-10
=>x=-50; y=-30
Lời giải:
Vì $x,y$ tỉ lệ nghịch nên tích $xy$ không đổi
a.
Ta có:
$x_2y_2=x_1y_1=-45$
$\Rightarrow y_2=\frac{-45}{x_2}=\frac{-45}{9}=-5$
b.
$x_1y_1=x_2y_2$
$2y_1=4y_2$
$y_1=2y_2$. Thay vô $y_1+y_2=-12$ thì:
$2y_2+y_2=-12$
$3y_2=-12$
$y_2=-4$
$y_1=2y_2=2(-4)=-8$
c.
$x_1y_1=x_2y_2$
$12x_1=3y_2$
$4x_1=y_2$
Thay vô $x_1+2y_2=18$ thì:
$x_1+2.4x_1=18$
$9x_1=18$
$x_1=2$
$y_2=4x_1=4.2=8$
b: x,y tỉ lệ nghịch
=>x1*y1=x2*y2
=>x1/y2=x2/y1=k
=>x1=y2*k; x2=y1*k
x1+x2=6
=>k*(y1+y2)=6
=>\(y_1+y_2=\dfrac{6}{k}\)
c: x1/y2=x2/y1
=>x1/x2=y2/y1
=>x1/3=y2/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{3}=\dfrac{y_2}{12}=\dfrac{x_1+2y_2}{3+2\cdot12}=\dfrac{18}{27}=\dfrac{2}{3}\)
=>\(x_1=2;y_2=8\)
Vì x và y là hai đại lượng tỉ lệ nghịch nên
=>x.y=a
a/
Vì x1 và x2 là hai giá trị bất kì của x;y1 và y2 là hai giá trị bất kì của y nên
=>x1 và y1;x2 và y2 là hai đại lượng tỉ lệ nghịch
=>x1.y1=a
Mà x1y1=-45 nên hệ số tỉ lệ của x và y là -45
x2.y2=a
=>x2.y2=-45
=>9.y2=-45
=>y2=-45:9=-5
Vậy y2=-5
b/
Ta có:
x1.y1=x2.y2
=>x1/x2=y2/y1
=>y1/x2=y2/x1
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
y1/x2=y2/x1=y1/4=y2/2=y1+y2/x2+x1=-12/4+2=-12/6=-2
Từ y1/4=-2=>y1=-2.4=-8
Từ y2/2=-2=>y2=-2.2=-4
Vậy y1=-8 và y2=-4
c/
x1.y1=x2.y2
=>x1/x2=y2/y1
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x1/x2=y2/y1=x1/3=y2/12=x1+2y2/3+24=18/27=2/3
Từ x1/3=2/3=>x1=2/3.3=2
Từ y2/12=2/3=>y2=2/3.12=8
Vậy x1=2 và y2=8
Vì x;y là 2 đại lượng tỉ lệ nghịch nên
\(x_1.y_1=x_2.y_2\)
\(\Rightarrow y_2=\dfrac{x_1.y_1}{x_2}=\dfrac{45}{9}=5\)