Cho tứ giác AECF có AE = AF, góc AEC = 100 độ, CA là tia phân giác của ECF Tính AFC
mình đag gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{30.40}{50}=24$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18$ (cm)
b)
Theo tính chất tia phân giác:
$\frac{AD}{DC}=\frac{AB}{BC}=\frac{30}{50}=\frac{3}{5}$
$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$
$\Leftrightarrow \frac{AD}{40}=\frac{3}{8}$
$\Rightarrow AD=15$ (cm)
$DC=AC-AD=40-15=25$ (cm)
b1 a) goi I la giao diem cua AD va BC
vi AB//DC => goc IDC = goc DAB (2 goc dong vi)
ma goc A =30 => goc IDC =30
lai co goc IDC + goc ADC =180 ( I,D,A thang hang)
30+ goc ADC =180 => goc ADC=150
vi AB//DC => goc ICD = goc CBA (2 goc dong vi)
có goc ICD+ goc DCB =180 (I,C,B thang hang )
goc ICD+ 120=180 => goc ICD = 60 => goc ABC=60
còn ý b) bạn làm tương tự nhé
b2
vi DC =BC (gt) => tam giac DCB can tai C => goc CDB = goc DBC (1)
vi DB la phan giac cua goc ADC => g ADB =g BDC (2)
tu (1,2) => g ADB = g DBC
ma 2 goc nay o vi tri so le trong
=> AD// BC => ABCD la hinh thang
Giả sử góc ECF = x độDo CA là tia phân giác của góc ECF, nên góc ECA = góc ECF = x độVì tứ giác AECF là tứ giác cân (AE = AF), ta có góc ACF = góc AFC = (180 - góc AEC) / 2 = (180 - 100) / 2 = 40 độVậy, AFC là tứ giác cân (AC = AF), và góc AFC = góc ACF = 40 độ.