Tìm GTNN của biểu thức x2+(x-y)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Ta có bđt \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) (1)
Thật vậy \(\left(1\right)\Leftrightarrow2a^2+2b^2\ge a^2-2ab+b^2\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Áp dụng bđt (1) ta đc
\(A=x^2+y^2\)
\(\Rightarrow2A=2\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra <=> x = y = 1
Vậy .............
Ta có: \(x+y=2\Rightarrow y=2-x\)
Suy ra: \(A=x^2+y^2=x^2+\left(2-x\right)^2=x^2+4-4x+x^2=2x^2-4x+4\)
\(=2\left(x^2-2x+2\right)=2\left(x^2-2x+1\right)+2=2\left(x-1\right)^2+2\)
Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow2\left(x-1\right)^2\ge0\left(\forall x\right)\)
\(\Rightarrow A=2\left(x-1\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(\Rightarrow y=2-x=2-1=1\)
Vậy Amin = 2 khi và chỉ khi x = y = 1
Áp dụng bđt \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) đc
\(S=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=2\)
Dấu "='' khi x = y = 1
Cách 1 :
từ x + y = 2 ta có : y = 2 - x . Do đó : \(S=x^2+\left(2-x\right)^2=2\left(x-1\right)^2+2\ge2\)
Vậy min \(S=2\Leftrightarrow x=y=1\)
Cách 2 : áp dụng bất đẳng thức Bunhiacopxki với a = x , c = 1 ; b = y ; d = 1 , ta có :
\(\left(x+y\right)^2\le\left(x^2+y^2\right)\left(1+1\right)\Leftrightarrow4\le2\left(x^2+y^2\right)=2S\Leftrightarrow S\ge2\Rightarrow minS=2\Leftrightarrow x=y=1\)
Ta có: 3x + y = 1 => y = 1 - 3x
a, Thay y = 1 - 3x vào M, ta có:
\(\Rightarrow M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=3\left(4x^2-2x+\frac{1}{3}\right)\)
\(=3\left(4x^2-2x+\frac{1}{4}+\frac{1}{12}\right)=3\left(2x-\frac{1}{2}\right)^2+\frac{3}{12}=3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow3\left(2x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-\frac{1}{2}=0\\3x+y=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=1-3x=1-3.\frac{1}{4}=\frac{1}{4}\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{4}\)
Vậy GTNN M = 1/4 khi x = y = 1/4
b, Thay y = 1 - 3x vào N
\(\Rightarrow N=x\left(1-3x\right)=x-3x^2=-3\left(x^2-\frac{x}{3}+\frac{1}{36}-\frac{1}{36}\right)\)
\(=-3\left(x-\frac{1}{6}\right)^2-3.\left(-\frac{1}{36}\right)=-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\)
Vì \(\left(x-\frac{1}{6}\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x-\frac{1}{6}\right)^2+\frac{1}{12}\le\frac{1}{12}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{6}=0\\3x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=1-3x=1-3.\frac{1}{6}=\frac{1}{2}\end{cases}}\)
Vậy GTLN N = 1/12 khi x = 1/6 và y = 1/2
\(y=\dfrac{x-1}{2}+\dfrac{1}{2}+\dfrac{2}{x-1}\ge2\sqrt{\dfrac{x-1}{2}\cdot\dfrac{2}{x-1}}+\dfrac{1}{2}=2\cdot1+\dfrac{1}{2}=\dfrac{3}{2}\)
Dấu \("="\Leftrightarrow\left(x-1\right)^2=2\Leftrightarrow x=3\left(x>1\right)\)
Lời giải:
$x>1\Rightarrow x-1>0$
Áp dụng BĐT Cô-si ta có:
$y=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\geq 2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}$
Vậy $y_{\min}=\frac{5}{2}$
Giá trị này đạt tại $x-1=2\Leftrightarrow x=3$
ta có x2 \(\ge\)0,(x-y)2 \(\ge\)0
=> x2+(x-y)2\(\ge\)0
Để x2+(x-y)2 đạt GTNN là 0 thì x2 =0; (x-y)2 =0
x2 =0=>x=0
(x-y)2 =0 =>x-y=0 =>0 -y=0 =>y=0
Vậy x2+(x-y)2 đạt GTNN là 0 khi x=0 và y=0
gtnn là 0