Tìm GTNN của M=|x-2016|+|x-2017|
Giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào link này thử xem nè!!!!
https://olm.vn/hoi-dap/tim-kiem?q=Gi%C3%A1+tr%E1%BB%8B+nh%E1%BB%8F+nh%E1%BA%A5t+c%E1%BB%A7a+P=%7Cx-2015%7C+%7Cx+2016%7C&id=356263
Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)
=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)
\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)
Vậy gtnn của M = 2018 đạt tại x = y = 0.
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
Ta có :
M = | x - 2015 | + | x - 2016 | + | x - 2017 |
M = | x - 2015 | + | x - 2016 | + | 2017 - x |
M = | x - 2015 | + | x - 2016 | + | 2017 - x | \(\ge\)| x - 2015 + 2017 - x | + | x - 2016 | = 2 + | x - 2016 | \(\ge\)2
Dấu = xảy ra \(\Leftrightarrow\)( x - 2015 )( 2017 - x )\(\ge\)0 ( loại ) và x - 2016 = 0 \(\Rightarrow\)x = 2016 ( chọn )
Vậy : Min M = 2 \(\Leftrightarrow\)x = 2016
A= |x-2016| + |x-2017|
=> A= |x-2016| + |2017-x|
Ta có: |x-2016| ≥ x-2016 x. Dấu bằng xảy ra khi x-2016 ≥ 0
|2017-x| ≥ 2017-x x. Dấu bằng xảy ra khi 2017-x ≥ 0
=> |x-2016| + |2017-x| ≥ x-2016+2017-x x
=> A ≥ 1 x
Dấu "=" xảy ra khi x-2016 ≥ 0 và 2017-x ≥ 0
=>x ≥ 2016 và -x ≥ -2017
=> x ≥ 2016 và x ≤ 2017
=> 2016 ≤ x ≤ 2017
Vậy giá trị nhỏ nhất của A là 1 tại 2016 ≤ x ≤ 2017.
M= \(x^2-3x+5=x^2-2\times\frac{3}{2}\times x+\frac{9}{4}-\frac{9}{4}+5\)
M = \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{3}\right)^2\ge0\)
=> \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy MIN M = \(\frac{11}{4}\)dấu bằng xảy ra khi và chỉ khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
\(M=x^2-3x+5=\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+5-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy \(MinM=\frac{11}{4}\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
M = |x - 2016| + |x - 2017|
<=> M = |x - 2016| + |-x + 2017| \(\ge\) |x - 2016 - x + 2017| = |1| = 1
When x = 2016 or x = 2017