Phân tích đa thức thành nhân tử:
a) x^4 - y^4
b) 4x^2+12x+9
c) 36-12x+x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
a) \(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
b) \(=\left(x^2+2x\right)+\left(10x+20\right)=x\left(x+2\right)+10\left(x+2\right)=\left(x+2\right)\left(x+10\right)\)
c) đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+4\right)+2=t\left(t+3\right)+2=t^2+3t+2=\left(t^2+t\right)+\left(2t+2\right)=t\left(t+1\right)+2\left(t+1\right)=\left(t+1\right)\left(t+2\right)=\left(x^2+x+2\right)\left(x^2+x+3\right)\)
\(a,=6x\left(x-2\right)-7\left(x-2\right)=\left(6x-7\right)\left(x-2\right)\)
Bài 4:
\(x^3-2x^2+x=x\left(x-1\right)^2\)
\(5\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5-y\right)\)
\(x^2-12x+36=\left(x-6\right)^2\)
\(x^4-2x^3-12x^2+12x+36=x^4+x^2+36-2x^3+12x-12x^2-x^2\)
\(=\left(x^2-x-6\right)^2-x^2=\left(x^2-6\right)\left(x^2-2x-6\right)\)
a) Ta có: \(4x^2-28xy+49y^2\)
\(=\left(2x\right)^2-2\cdot2x\cdot7y+\left(7y\right)^2\)
\(=\left(2x-7y\right)^2\)
b) Ta có: \(x^2+8xy+16y^2\)
\(=x^2+2\cdot x\cdot4y+\left(4y\right)^2\)
\(=\left(x+4y\right)^2\)
c) Ta có: \(x^2-12x+36\)
\(=x^2-2\cdot x\cdot6+6^2\)
\(=\left(x-6\right)^2\)
a) 3x^4 - 12x^2 = 3x^2.(x^2 - 4) = 3x^2.(x - 2)(x + 2)
b) x^2 - 2xy + 3x - 6y
= x(x - 2y) + 3(x - 2y)
= (x - 2y)(x + 3)
a) 3x^4 - 12x^2
= 3x^2.x^2- 3.4x^2
= x^2-4
b) x ^2 - 2xy + 3x - 6y
=(x^2-2xy) +(3x-6y)
=x.(x-2y)+3(x-2y)
=(x-2y).(x+3)
\(a,=6y\left(2x^2-3xy-5y^2\right)\\ =6y\left(2x^2+2xy-5xy-5y^2\right)\\ =6y\left(x+y\right)\left(2x-5y\right)\\ b,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ c,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)\\ =\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ d,=\left(a^2+3b\right)^2-1=\left(a^2+3b+1\right)\left(a^2+3b-1\right)\\ e,=\left(2x-5\right)\left(2x+5\right)-\left(2x+7\right)\left(2x-5\right)\\ =\left(2x-5\right)\left(2x+5-2x-7\right)\\ =-2\left(2x-5\right)\\ f,=x^2+5x-3x-15=\left(x+5\right)\left(x-3\right)\\ g,=x^3-x-6x-6\\ =x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\\ =\left(x+1\right)\left(x^2-x-6\right)\\ =\left(x+1\right)\left(x^2-3x+2x-6\right)\\ =\left(x+1\right)\left(x-3\right)\left(x+2\right)\\ l,=x^4+4x^2+4-4x^2\\ =\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\\ h,=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)
a) \(x^4-y^4=\left(x^2\right)^2-\left(y^2\right)^2=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
c) \(36-12x+x^2=x^2-12x+36=x^2-6x-6x+36\)
\(=x\left(x-6\right)-6\left(x-6\right)=\left(x-6\right)\left(x-6\right)=\left(x-6\right)^2\)
\(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(4x^2+12x+9\)
\(=\left(2x\right)^2+2.2x.3+9\)
\(=\left(2x+3\right)^2\)
\(36-12x+x^2\)
\(=6^2-2.6.x+x^2\)
\(=\left(6-x\right)^2\)