ai giải giùm em câu này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\Leftrightarrow\left\{{}\begin{matrix}m-4=1\\m-1\ne3\end{matrix}\right.\Leftrightarrow m=5\\ c,\Leftrightarrow A\left(3;0\right)\in\left(d_2\right)\Leftrightarrow3m-12+m-1=0\Leftrightarrow m=\dfrac{13}{4}\\ d,\text{PT giao Ox và Oy: }\left\{{}\begin{matrix}y=0\Leftrightarrow x=\dfrac{1-m}{m-4}\Leftrightarrow OA=\left|\dfrac{m-1}{m-4}\right|\\x=0\Leftrightarrow y=m-1\Leftrightarrow OB=\left|m-1\right|\end{matrix}\right.\\ \text{Kẻ }OH\perp\left(d\right)\Leftrightarrow\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-4\right)^2}{\left(m-1\right)^2}+\dfrac{1}{\left(m-1\right)^2}\\ \text{Đặt }OH^2=t\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-8m+17}{m^2-2m+1}\\ \Leftrightarrow m^2t-8mt+17t=m^2-2m+1\\ \Leftrightarrow m^2\left(t-1\right)-2m\left(4t-1\right)+17t-1=0\\ \Leftrightarrow\Delta'=\left(4t-1\right)^2-\left(t-1\right)\left(17t-1\right)\ge0\\ \Leftrightarrow-t^2+10t\ge0\Leftrightarrow0\le t\le10\\ \Leftrightarrow OH_{max}=\sqrt{10}\Leftrightarrow\dfrac{m^2-2m+1}{m^2-8m+17}=10\Leftrightarrow...\)
Câu 5: Thể tích của khối chóp đã cho: V = 1/3.2a2.2a = 4/3.a3. Chọn C.
Câu 6: Thể tích của khối chóp đã cho: V = 1/3.32.2 = 6. Chọn A.
Câu 7: Thể tích của khối chóp S.ABC: V = 1/3.1/2.a2.h = 5a3 ⇒ h = 30a. Chọn B.
Chỉ khi x + y + z = 0 mới như vậy.
Cụ thể :
Ta có :
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy^2-3x^2y-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2+z^2-\left(x+y\right)z\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[x^2+y^2+2xy+z^2-xz-yz-3xy\right]\)
\(=0\) là BS xyz
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
Rút gọn đúng không=)
\(\left(2x-3\right)\left(x+2\right)-\left(4x-2\right)\left(x-5\right)\\ =2x^2+4x-3x-6-\left(4x^2-20x-2x+10\right)\\ =2x^2+x-6-4x^2+20x+2x-10\\ =-2x^2+23x-16\)