Phân tích đa thức thành nhân tử
1) y2 - 4y + 4 - x2
2) 8x3 -12x2 + 6x - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1+6x-6x^2-x^3\)
\(=-x^3-6x^2+6x+1\)
\(=\left(-x^3+1\right)-6x\left(x-1\right)\)
\(=-\left(x-1\right)\left(x^2+x+1\right)-6x\cdot\left(x-1\right)\)
\(=\left(x-1\right)\left(-x^2-x-1-6x\right)\)
\(=-\left(x-1\right)\left(x^2+7x+1\right)\)
1. \(=3x\left(2x+5\right)\)
2. \(=\left(3x-1\right)\left(3x+1\right)\)
3. \(=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\)
1, = 3x.(2x + 5)
2. = (3x)2 - 12 = (3x - 1).(3x +1 )
3, =(x2 + 6x + 9) - y2 = (x + 3)2 - y2 =(x + y -3 ). (x - y +3)
a, 2xy^2 ( x^3 -3xy - 4 )
b, x^2 - 4x - 4x +16
= x(x-4) - 4(x-4)
= (x-4) (x-4)
1) \(x^2-4xy+4y^2+xz-2yz\)
\(=\left(x^2-4xy+4y^2\right)+\left(xz-2yz\right)\)
\(=\left(x-2y\right)^2+z\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-2y+z\right)\)
2) \(\left(x-y\right)^3+\left(x+y\right)^3\)
\(=\left[\left(x-y\right)+\left(x+y\right)\right]\left[\left(x-y\right)^2-\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right]\)
\(=\left(x-y+x+y\right)\left(x^2-2xy+y^2-x^2+y^2+x^2+2xy+y^2\right)\)
\(=2x\left(x^2+3y^2\right)\)
1.
\(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\\ =\left(12x^2+6x\right)\left(y+z+y-z\right)\\ =2y\left(12x^2+6x\right)\\ =2y.6x\left(2x+1\right)\\ =12xy\left(2x+1\right)\)
2.
\(x\left(x-6\right)+10\left(x-6\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
Vậy \(x\in\left\{6;-10\right\}\) là nghiệm của pt
Bài 1:
Ta có: \(\left(12x^2+6x\right)\left(y+z\right)+\left(12x^2+6x\right)\left(y-z\right)\)
\(=\left(12x^2+6x\right)\left(y+z+y-z\right)\)
\(=6x\left(2x+1\right)\cdot2y\)
\(=12xy\left(2x+1\right)\)
Bài 2:
Ta có: \(x\left(x-6\right)+10\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-10\end{matrix}\right.\)
bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)
Bài 2:
1: \(x^2y^2-8-1\)
\(=x^2y^2-9\)
\(=\left(xy-3\right)\left(xy+3\right)\)
2: \(x^3y-2x^2y+xy-xy^3\)
\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)
\(=xy\left(x^2-2x+1-y^2\right)\)
\(=xy\left[\left(x-1\right)^2-y^2\right]\)
\(=xy\left(x-1-y\right)\left(x-1+y\right)\)
3: \(x^3-2x^2y+xy^2\)
\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)
\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
4: \(x^2+2x-y^2+1\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
5: \(x^2+2x-4y^2+1\)
\(=\left(x^2+2x+1\right)-4y^2\)
\(=\left(x+1\right)^2-4y^2\)
\(=\left(x+1-2y\right)\left(x+1+2y\right)\)
6: \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
1: Đa thức này ko phân tích được nha bạn
2: \(x^2+8x+7\)
\(=x^2+x+7x+7\)
\(=x\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left(x+7\right)\)
3: \(x^2-6x-16\)
\(=x^2-8x+2x-16\)
\(=x\left(x-8\right)+2\left(x-8\right)\)
\(=\left(x-8\right)\left(x+2\right)\)
4: \(4x^2-8x+3\)
\(=4x^2-2x-6x+3\)
\(=2x\left(2x-1\right)-3\left(2x-1\right)\)
\(=\left(2x-1\right)\left(2x-3\right)\)
5: \(3x^2-11x+6\)
\(=3x^2-9x-2x+6\)
\(=3x\left(x-3\right)-2\left(x-3\right)\)
\(=\left(x-3\right)\left(3x-2\right)\)
1)
\(y^2-4y+4-x^2\\ =\left(y-2\right)^2-x^2\\ =\left(y-2-x\right)\left(y-2+x\right)\)
2)
\(8x^3-12x^2+6x-2\\ =2\left(4x^3-6x^2+3x-1\right)\\ =2\left(4x^3-4x^2-2x^2+2x+x-1\right)\\ =2\left(4x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\right)\\ =2\left(x-1\right)\left(4x^2-2x+1\right)\)
1) \(y^2-4y+4-x^2\)
\(=\left(y^2-4y+4\right)-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-2-x\right)\left(y-2+x\right)\)
2) \(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
\(=\left(2x-1\right)\left(2x-1\right)\left(2x-1\right)\)