Q(x)= x14-10x13+10x12-10x11+...+10x2-10x+10 với x=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(P=\left(x^{14}-9x^{13}\right)-\left(x^{13}-9x^{12}\right)+\left(x^{12}-9x^{11}\right)-...+\left(x^2-9x\right)-\left(x-9\right)+1\)
\(=x^{13}\left(x-9\right)-x^{12}\left(x-9\right)+x^{11}\left(x-9\right)+...+x\left(x-9\right)-\left(x-9\right)+1\)
\(P\left(9\right)=1\)
b)
\(Q=\left(x^{15}-7x^{14}\right)-\left(x^{14}-7x^{13}\right)+\left(x^{13}-7x^{12}\right)-...-\left(x^2-7x\right)+\left(x-7\right)+2\)
\(=x^{14}\left(x-7\right)-x^{13}\left(x-7\right)+x^{12}\left(x-7\right)-...-x\left(x-7\right)+\left(x-7\right)+2\)
\(Q\left(7\right)=2\)
\(x=9\Leftrightarrow x+1=10\\ \Leftrightarrow M=x^{2012}-\left(x+1\right)x^{2012}+...-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+1\right)\\ M=x^{2012}-x^{2013}-x^{2012}+...-x^3-x^2+x^2+x-x-1\\ \Leftrightarrow M=-x^{2013}-1=-9^{2013}-1\)
Bài 4 : Tìm y , biết :
a) y ( 2y - 7 ) - 4y + 14 = 0
b) ( y + 3 )( y2 - 3y + 9 ) - y( y2 - 3 ) = 18
GIẢI HỘ LUN Ạa, \(A=x^3-30x^2-31x+1\)
\(=x^3-31x^2+x^2-31x+1\)
\(=x^2\left(x-31\right)+x\left(x-31\right)+1\)
\(=\left(x^2+x\right)\left(x-31\right)+1\)
Thay x = 31 \(\Rightarrow A=1\)
Vậy A = 1 khi x = 31
b, tách ra làm tương tự phần a
x=9 nên x+1=10
f(9)=x^50-x^49(x+1)+x^8(x+1)-...+x^2(x+1)-x(x+1)+100
=x^50-x^50-x^49+x^49+x^48-x^48+...+x^3+x^2-x^2-x+100
=-x+100
=-9+100=91
Thay 10 = x + 1 vào M, ta có:
M = x2013 - (x + 1)x2012 + (x + 1)x2011 - ...... - (x +1)x2 +(x + 1)x - (x +1)
=> M = x2013 - x2013 - x2012 + x2012 + x2011 - .... - x3 - x2 + x2 + x - x - 1
=> M = -1
a) Ta có: \(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=x^7-x^6\left(x+1\right)+x^5\left(x+1\right)-...+x\left(x+1\right)+15\)
\(=x^7-x^7-x^6+x^6+x^5-...+x^2+x+15\)
\(=x+15\)
Thay x=79 vào biểu thức \(P\left(x\right)=x+15\), ta được:
\(P\left(79\right)=79+15=94\)
\(a,=x\left(x^2-10x+25\right)=x\left(x-5\right)^2\\ b,=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\\ c,=\left(x-5\right)^2\\ d,=\left(x-8\right)\left(x+8\right)\)
\(x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)