K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay x=1 vào y=4x+m, ta được:

y=4*1+m=m+4

Thay x=1 và y=m+4 vào y=2mx+5, ta được:

2m+5=m+4

=>m=-1

b: Thay x=3 và y=0 vào (d), ta được:

3(3m-2)+4=0

=>9m-6+4=0

=>9m-2=0

=>m=2/9

a: Để (d)//(d1) thì \(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne-2\end{matrix}\right.\)

=>m=2

b: Để (d) trùng với (d2) thì

\(\left\{{}\begin{matrix}m^2-2=-1\\m-1=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\m=-1\end{matrix}\right.\)

=>m=-1

c:

Để (d) cắt (d3) thì \(m^2-2\ne3\)

=>\(m^2\ne5\)

=>\(m\ne\pm\sqrt{5}\)

Thay x=-1 vào y=3x-2, ta được:

\(y=3\left(-1\right)-2=-5\)

Thay x=-1 và y=-5 vào (d), ta được:

\(-\left(m^2-2\right)+m-1=-5\)

=>\(-m^2+2+m-1+5=0\)

=>\(-m^2+m+6=0\)

=>\(m^2-m-6=0\)

=>(m-3)(m+2)=0

=>\(\left[{}\begin{matrix}m-3=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\left(nhận\right)\\m=-2\left(nhận\right)\end{matrix}\right.\)

d: Để (d) vuông góc với (d4) thì \(\dfrac{4}{5}\left(m^2-2\right)=-1\)

=>\(m^2-2=-1:\dfrac{4}{5}=-\dfrac{5}{4}\)

=>\(m^2=\dfrac{3}{4}\)

=>\(m=\pm\dfrac{\sqrt{3}}{2}\)

13 tháng 12 2017

a, Khi m = 1 ta có d : y = 2x – 1 và (P): y = –x2

Phương trình hoành độ giao điểm của d và (P) là:

Với  x = − 1 + 2 ⇒ y = − 3 + 2 2  

Với  x = − 1 − 2 ⇒ y = − 3 − 2 2

Vậy các giao điểm là  − 1 + 2 ; − 3 + 2 2 ; − 1 − 2 ; − 3 − 2 2

a: Để (d)//(d') thì \(\left\{{}\begin{matrix}k-2=2\\-k\ne4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}k=4\\k\ne-4\end{matrix}\right.\)

=>k=4

b: Để (d) vuông góc (d') thì \(2\left(k-2\right)=-1\)

=>2k-4=-1

=>2k=3

=>\(k=\dfrac{3}{2}\)

c: Để (d) cắt (d') thì \(k-2\ne2\)

=>\(k\ne4\)

NV
9 tháng 8 2021

a.

Để hai đường thẳng song song:

\(\Rightarrow\left\{{}\begin{matrix}2m=-\dfrac{1}{3}\\m-1\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{1}{6}\\m\ne2\end{matrix}\right.\) \(\Leftrightarrow m=-\dfrac{1}{6}\)

b.

\(-2x-y=5\Leftrightarrow y=-2x-5\)

Để hai đường thẳng trùng nhau:

\(\Leftrightarrow\left\{{}\begin{matrix}2m=-2\\m-1=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m=-4\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

Vậy ko tồn tại m để 2 đường thẳng trùng nhau

10 tháng 8 2021

giải chi tiết giúp e với được ko ạ

 

 

5 tháng 5 2023

a, Hoành độ giao điểm của d và P là:

x2 = 2mx -m +1 <=> x-2mx +m-1

đenta = 4m2-4.(m-1) = 4m2-4m+4 = (2m)2-2.2m +1 +3=(2m-1)2+3

=> đenta >= 3

Vậy không có giá trị m để P tiếp xúc với d

b,Áp dụng định lí Vi-ét:

\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m-1\end{matrix}\right.\)

Ta có: x12.x2 + mx2=x2

<=> x12.x2+mx2-x2=0 <=> x12.x2 + x2(m-1)=0

<=> x12.x2+x2(x1.x2)=0 <=>x12.x2+x22.x1=0

<=>x1.x2.(x1+x2)=0 <=> (m-1).2m=0

<=> \(\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)  

Vậy m \(\in\) \(\left\{1;0\right\}\)

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

PT hoành độ giao điểm:

$x^2-2mx-(2m+1)=0(*)$

Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$

$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$

$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$

Khi đó:

$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$

$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix} 0\leq m< 1\\ \sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)

Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)

a) Để (d) đi qua M(2;5) thì Thay x=2 và y=5 vào (d), ta được:

\(2m\cdot2-2m+3=5\)

\(\Leftrightarrow4m-2m=5-3\)

\(\Leftrightarrow2m=2\)

\(\Leftrightarrow m=1\)

Vậy: Để (d) đi qua M(2;5) thì m=1

b) Phương trình hoành độ của (d) và (P) là: 

\(x^2=2mx-2m+3\)

\(\Leftrightarrow x^2-2mx+2m-3=0\)

\(\Delta=\left(-2m\right)^2-4\cdot1\cdot\left(2m-3\right)=4m^2-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=4m^2-8m+12=\left(2m\right)^2-2\cdot2m\cdot2+4+8\)

\(\Leftrightarrow\Delta=\left(2m-2\right)^2+8>0\forall m\)

Suy ra: (d) và (P) luôn cắt nhau tại hai điểm phân biệt với mọi m

9 tháng 6 2017

Đáp án: D.

Tập xác định: D = R \ {m}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số có cực trị khi và chỉ khi y' đổi dấu trên D

x 2  - 2mx + 2 m 2  - 5 = 0 có hai nghiệm phân biệt

⇔ ∆ ' = - m 2  + 5 > 0 ⇔ - 5  < m <  5