So sánh A=\(1+5+5^2+5^3+...+5^{150}\) và B=\(\left(5^{151}\right)⋮4\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=5^{32}-1< 5^{32}\)
Vậy \(B< A\)
\(A=x+\left(x+\frac{1}{5}\right)+\left(x+\frac{2}{5}\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{4}{5}\right)\)
\(=5x+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\)
\(=5x+2\)
\(B=5x\)
\(\Rightarrow A>B\)Với \(\forall\)\(x\)
#)Giải :
\(A=\left[x\right]+\left[1+\frac{1}{5}\right]+\left[x+\frac{2}{5}\right]+\left[x+\frac{3}{5}\right]+\left[x+\frac{4}{5}\right]\)
Thay x = 3,7 vào biểu thức, ta có :
\(A=\left[3,7\right]+\left[3,7+\frac{1}{5}\right]+\left[3,7+\frac{2}{5}\right]+\left[3,7+\frac{3}{5}\right]+\left[3,7+\frac{4}{5}\right]\)
\(A=\left[3,7+3,7+3,7+3,7+3,7\right]+\left[1+\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right]\)
\(A=18,5+3\)
\(A=21,5\)
\(B=\left[5x\right]=\left[5\times3,7\right]=18,5\)
Vì 21,5 > 18,5 \(\Rightarrow A>B\)
Ta có
\(A=\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\) \(B=\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
\(\Leftrightarrow A=\frac{\left(\frac{17}{5}+\frac{1}{5}\right):\frac{5}{2}}{\left(\frac{38}{7}-\frac{9}{4}\right):\frac{276}{56}}\) \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(\frac{6}{5}-\frac{5}{4}\right)}{\frac{8}{25}+\frac{2}{25}}\)
\(\Leftrightarrow A=\frac{\frac{18}{5}:\frac{5}{2}}{\frac{89}{28}:\frac{276}{56}}\) \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(-\frac{1}{20}\right)}{\frac{2}{5}}\)
\(\Leftrightarrow A=\frac{\frac{36}{25}}{\frac{89}{138}}\) \(\Leftrightarrow B=\frac{\frac{5}{4}}{\frac{2}{5}}\)
\(\Leftrightarrow A=\frac{4968}{2225}\) \(\Leftrightarrow B=\frac{25}{8}\)
\(\Leftrightarrow A=\frac{39744}{17800}\) \(\Leftrightarrow B=\frac{55625}{17800}\)
Ta có: 39744<55625
\(\Rightarrow A< B\)
Vậy A<B
Ta có
2002.2004=(2003-1)(2003+1)
=2003^2-1(hằng đẳng thức hiệu 2 bình phương<2003^2
Mình giải 2 câu rùi đó nhớ tick he
a) Ta có
\(5n^3+15n^2+10n=5n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là 3 số nguyên liên tiếp
=>n(n+1)(n+2)chia hết cho 6.Mà (5;6)=1
=>5n(n+1)(n+2) chia hết cho 30
A =\(\frac{\left(\frac{17}{5}+\frac{1}{5}\right).\frac{2}{5}}{\left(\frac{38}{7}-\frac{9}{4}\right).\frac{56}{267}}\)
A=\(\frac{36}{25}\).\(\frac{3}{2}\)=\(\frac{54}{25}\)=2,16
B=\(\frac{1,2:\left(\frac{6}{5}-\frac{5}{4}\right)}{0,32+\frac{2}{25}}\)=-24.\(\frac{5}{2}\)=-60
vì 2,16 > -60 Vậy A>B
Thay \(3,7=3\frac{7}{10}\)vào biểu thức:
A = \(\left[3+\frac{7}{10}\right]+\left[3+\frac{9}{10}\right]+\left[3+\frac{11}{10}\right]+\left[3+\frac{13}{10}\right]+\left[3+\frac{15}{10}\right]\)
A = 3 + 3 + 4 +4 + 4 = 18
B = \(\left[5x\right]=\left[5.3,7\right]=\left[18,5\right]=18\)
Vậy A = B
1) c)
\(\left[\frac{1000}{3}\right]+\left[\frac{1000}{3^2}\right]+\left[\frac{1000}{3^3}\right]+\left[\frac{1000}{3^4}\right]=33+11+3+1=48\)
1.
\(a.\frac{1}{2}+a.\frac{1}{4}=-\frac{4}{5}\Rightarrow a.\left(\frac{1}{2}+\frac{1}{4}\right)=-\frac{4}{5}\Rightarrow a=-\frac{16}{15}\)
2. Ta có:
\(A=\left(2\frac{5}{6}+1\frac{4}{9}\right):\left(10\frac{1}{12}-9\frac{1}{2}\right)=\left(\frac{17}{6}+\frac{13}{9}\right):\left(\frac{121}{12}-\frac{19}{2}\right)=\frac{77}{18}:\frac{7}{12}=\frac{22}{3}\)
\(B=1\frac{5}{18}-\frac{5}{18}\left(\frac{1}{15}+1\frac{1}{3}\right)=\frac{23}{18}-\frac{5}{18}\left(\frac{1}{15}+\frac{4}{3}\right)=\frac{23}{18}-\frac{1}{54}-\frac{10}{27}=\frac{8}{9}\)
Có: \(\frac{22}{3}=\frac{66}{9}>\frac{8}{9}\Leftrightarrow A>B\)
\(5A=5+5^2+5^3+..+5^{151}\)
\(5A-A=\left(5+5^2+...+5^{151}\right)-\left(1+5+..+5^{150}\right)\)
\(4A=5^{151}-1\)
\(A=\dfrac{5^{151}-1}{4}\)
Nếu mình không nhầm thì dấu chia bạn đánh nhầm thành dấu chia hết
=> A < B