K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHM vuông tại H và ΔABM vuông tại B có

MA chung

\(\widehat{AMH}=\widehat{BMA}\)

Do đó: ΔAHM=ΔABM

=>AH=AB=AD

b: Xét ΔADK vuông tại D và ΔAHK vuông tại H có

AK chung

AD=AH

Do đó: ΔADK=ΔAHK

c: \(\widehat{MAK}=\widehat{MAH}+\widehat{KAH}\)

\(=\dfrac{1}{2}\left(\widehat{BAH}+\widehat{DAH}\right)=\dfrac{1}{2}\cdot90^0=45^0\)

12 tháng 10 2023

cái đoạn này 

Do đó: ΔAHM=ΔABM

=>AH=AB=AD

sao AH = AB=AD hay vậy ? 

18 tháng 7 2023

mn giúp mik vứi

 

1: Xét ΔABM vuông tại B và ΔAHM vuông tại H có

MA chung

góc BMA=góc HMA

=>ΔABM=ΔAHM

=>AH=AB=AD

2: Xét ΔADK vuông tại D và ΔAHK vuông tại H có

AK chung

AD=AH

=>ΔADK=ΔAHK

3: góc MAK=góc MAH+góc KAH

=1/2(góc BAH+góc DAH)

=1/2*90=45 độ

2 tháng 4 2017

A B C H I M E

1) Do \(\Delta BAE\)có \(AB=AE\Rightarrow\Delta BAE\)cân vuông tại A

Mà \(AM\)là đường phân giác của \(\Delta BAE\)(hay\(\Delta ABC\))

\(\Rightarrow AM\)đồng thời là đường cao của \(\Delta BAE\Rightarrow\widehat{AMB}=\widehat{AME}=90^0\)

Ta có: \(\widehat{BAM}=\widehat{EAM}=\frac{\widehat{BAE}}{2}=45^0\left(1\right)\).Mà \(\Delta BAE\)vuông cân tại A\(\Rightarrow\widehat{ABM}=\widehat{AEM}=\frac{180^0-\widehat{BAE}}{2}=45^0\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\Delta ABM\)vuông cân (đpcm)

2) Vì \(\Delta ABC\)có \(\widehat{BAC}=90^0\Rightarrow\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}=90^0\left(3\right)\)

Vì H là đường cao của \(\Delta ABC\Rightarrow\widehat{AHC}=90^0\Rightarrow\widehat{HAC}+\widehat{ACH}=180^0-\widehat{AHC}=90^0\)(Hay \(\widehat{HAC}+\widehat{ACB}=90^0\))\(\left(4\right)\)

Từ (3) và (4)\(\Rightarrow\widehat{ABC}=\widehat{HAC}=90^0-\widehat{ACB}\)(Hay \(\widehat{ABH}=\widehat{IAE}\))

Xét \(\Delta ABH\)\(\Delta EAI\)có:\(\hept{\begin{cases}\widehat{AHB}=\widehat{EIA}=90^0\\AB=AE\\\widehat{ABH}=\widehat{EAI}\end{cases}}\Rightarrow\Delta ABH=\Delta EAI\)(cạnh huyền góc nhọn)

\(\Rightarrow IE=AH\)(Đpcm)

                  

10 tháng 2 2018

mk ko biet ve hinh

20 tháng 3 2019

a, xét tam giác AMB và tam giác AMC có:

                AB=AC(gt)

                \(\widehat{BAM}\)   =\(\widehat{CAM}\)(gt)

                AM chung

suy ra tam giác AMB= tam giác AMC(c.g.c)

b,xét tam giác AHM và tam giác AKM có:

                AM cạnh chung

                \(\widehat{HAM}\)=\(\widehat{KAM}\)(gt)

suy ra tam giác AHM=tam giác AKM(CH-GN)

Suy ra AH=AK

c,gọi I là giao điểm của AM và HK

xét tam giác AIH và tam giác AIK có:

            AH=AK(theo câu b)

            \(\widehat{IAH}\)=\(\widehat{IAK}\)(gt)

            AI chung

suy ra tam giác AIH=tam giác AIK (c.g.c)

Suy ra \(\widehat{AIH}\)=\(\widehat{AIK}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIH}\)=\(\widehat{AIK}\)= 90 độ

\(\Rightarrow\)HK vuông góc vs AM

a: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔHDB=ΔHEC

b: Ta có: ΔHDB=ΔHEC

nên BD=EC

Ta có: AD+DB=AB

AE+EC=AC

mà BD=CE

và AB=AC

nên AD=AE