Một con thuyền với 20km/h vượt qua 1 khúc sông nước chảy mạnh mất 6 phút. Biết rằng đường đi của con thuyền tạo với bờ một góc 40 độ. Tính chiều rộng của khúc sông ( kết quả làm tròn đến mét)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu như hình vẽ, trong đó:
AB là chiều rộng của khúc sông (cũng chính là đường đi của thuyền khi không có nước chảy).
AC là đoạn đường đi của chiếc thuyền (do nước chảy nên thuyền bị lệch).
Theo đề bài: v = 2km/h ; t = 5 phút = 1/12 h
Vậy chiều rộng khúc sông là 0,1566 km = 156,6 m.
Kí hiệu như hình vẽ, trong đó:
AB là chiều rộng của khúc sông (cũng chính là đường đi của thuyền khi không có nước chảy).
AC là đoạn đường đi của chiếc thuyền (do nước chảy nên thuyền bị lệch).
Theo đề bài: v = 2km/h ; t = 5 phút = 1/12 h
Vậy chiều rộng khúc sông là 0,1566 km = 156,6 m.
1.35.
Áp dụng định lý Pitago:
$AH^2=AB^2-BH^2=AC^2-CH^2$
$\Rightarrow 2AH^2=AB^2+AC^2-(BH^2+CH^2)$
$=BC^2-(BH^2+CH^2)=(BH+CH)^2-(BH^2+CH^2)$
$=2BH.CH$
$\Rightarrow AH^2=BH.CH=2.64=128$ (cm)
$\Rightarrow AH=8\sqrt{2}$ (cm)
$\tan B=\frac{AH}{BH}=4\sqrt{2}$
$\Rightarrow \widehat{B}=79,98^0$
$\tan C=\frac{AH}{CH}=\frac{\sqrt{2}}{6}$
$\Rightarrow \widehat{C}=10,02^0$
Gọi AB là đoạn đường mà con thuyền đi được trong 6p, BH là chiều rộng của khúc sông
=>ΔBHA vuông tại H
AB=20*1/10=2(km)=2000(m)
Xét ΔBHA vuông tại H có BH=BA*sinA
=>\(BH=2000\cdot sin40\simeq1285,58\left(m\right)\)