Từ một điểm \(O\) vẽ hai tia \(Ox\) và \(Oy\) lần lượt vuông góc với hai bức tường trong phòng. Đo góc \(xOy\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: x O z ^ = 90 ° = > z O y ^ = 30 °
Do y O t ^ = 90° nên t O z ^ = 60°.
b) Vì Om, On lần lượt là phân giác
của y O z ^ và x O t ^ nên:
m O z ^ = n O t ^ = 15°.
Do đó: m O n ^ = m O t ^ + t O z ^ + z O n ^ = 15° + 60° +15° = 90°
Ta có: x O y ^ + x ' O y ^ = 90° và x O y ^ + x O y ' ^ = 90° => x ' O y ^ = x O y ' ^ .
Mặt khác Ox', Oy' nằm trên hai nửa mặt phẳng đối nhau bờ Ox nên Ox nằm giữa hai tia Ox' và Oy'.
Tương tự Oy nằm giữa hai tia Ox' và Oy'
Gọi Om là phân giác góc xOy, suy ra Oy
nằm giữa Ox' và Om, Ox nằm giữa Oy' và
Om, Om nằm giữa Ox và Oy.
Lại có Om là phân giác góc xOy
=> x O m ^ = y O m ^ và x ' O y ^ = x O y ' ^ (cùng phụ x O y ^ ). Do đó x ' O m ^ = y ' O m ^ .
=> Om cũng là phân giác của x ' O y ' ^ (ĐPCM)
Mặt khác Ox', Oy' nằm trên hai nửa mặt phẳng đối nhau bờ Ox nên Ox nằm giữa hai tia Ox' và Oy'.
Tương tự Oy nằm giữa hai tia Ox' và Oy'
Gọi Om là phân giác góc xOy, suy ra Oy nằm giữa Ox' và Om, Ox nằm giữa Oy' và Om, Om nằm giữa Ox và Oy.
\(\widehat{xOy}=90^0\)