Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3}\)
a) Tại điểm \(\left( { - 1;1} \right)\);
b) Tại điểm có hoành độ bằng 2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm
Ta có: y' \(=\dfrac{-3}{\left(x+1\right)^2}\)
k=f'\(\left(x_0\right)\)\(\Rightarrow-3=\dfrac{-3}{\left(x_0+1\right)^2}\Leftrightarrow\left(x_0+1\right)^2=1\)\(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-2\end{matrix}\right.\)
Với \(x_0=0\) ta có pt tiếp tuyến:
\(d:3x+y-2=0\)
Với \(x_0=-2\) ta có pt tiếp tuyến:
\(d:3x+y+10=0\)
a: Tọa độ giao điểm của (d) với trục Ox là:
y=0 và (-x+2)=0
=>x=2 và y=0
\(y'=\dfrac{\left(-x+2\right)'\left(x+1\right)-\left(-x+2\right)\left(x+1\right)'}{\left(x+1\right)^2}\)
\(=\dfrac{\left(-\left(x+1\right)+x-2\right)}{\left(x+1\right)^2}=\dfrac{-3}{\left(x+1\right)^2}\)
Khi x=2 thì y'=-3/(2+1)^2=-3/9=-1/3
y-f(x0)=f'(x0)(x-x0)
=>y-0=-1/3(x-2)
=>y=-1/3x+2/3
b: Tọa độ giao của (d) với trục Oy là;
x=0 và y=(-0+2)/(0+1)=2
Khi x=0 thì \(y'=\dfrac{-3}{\left(0+1\right)^2}=-3\)
y-f(x0)=f'(x0)(x-x0)
=>y-2=-3(x-0)
=>y=-3x+2
có:
+) đạo hàm của f(x) = f'(x) = 3x2
+) phương trình tiếp tuyến là : y= f'(x).(x-x0) + f(x0)
=> y = 3x2.(x-1) + 13 + 3 = 3x3 - 3x2 + 4
a: \(y=-x^2+3x-2\)
=>\(y'=-\left(2x\right)+3\cdot1\)
=>y'=-2x+3
=>\(f'\left(x_0\right)=-2\cdot x_0+3\)
b: \(f'\left(2\right)=-2\cdot2+3=-4+3=-1\)
\(f\left(2\right)=-2^2+3\cdot2-2=0\)
Phương trình tiếp tuyến của (P) tại điểm có hoành độ x=2 là:
\(y-f\left(2\right)=f'\left(2\right)\left(x-2\right)\)
=>\(y-0=-1\left(x-2\right)=-x+2\)
=>y=-x+2
c: Đặt y=0
=>\(-x^2+3x-2=0\)
=>\(x^2-3x+2=0\)
=>(x-2)(x-1)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
TH1: x=2
\(f'\left(2\right)=-2\cdot2+3=-1;f\left(2\right)=-2^2+3\cdot2-2=0\)
Phương trình tiếp tuyến tại điểm có hoành độ x=2 là:
y-f(2)=f'(2)(x-2)
=>y-0=-1(x-2)
=>y=-x+2
TH2: x=1
\(f'\left(1\right)=-2\cdot1+3=1\)
f(1)=0
Phương trình tiếp tuyến tại điểm có hoành độ x=1 là:
y-f(1)=f'(1)(x-1)
=>y-0=1(x-1)
=>y=x-1
d: Gọi phương trình tiếp tuyến cần tìm là (d): y=ax+b(a<>0)
Vì (d) vuông góc với y=x+3 nên a*1=-1
=>a=-1
=>y=-x+b
=>f'(x)=-1
=>-2x+3=-1
=>-2x=-4
=>x=2
f(2)=-2^2+3*2-2=0
f'(2)=-1
Phương trình tiếp tuyến là:
y-f(2)=f'(2)(x-2)
=>y-0=-1(x-2)
=>y=-x+2
Ta có: \(y'=3x^2+6x\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=9\\y\left(1\right)=3\end{matrix}\right.\)
Phương trình tiếp tuyến là: \(y=9\left(x-1\right)+3=9x-6\)
\(f'\left(x\right)=3x^2-6x+1\Rightarrow f'\left(1\right)=-2\)
Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 là:
\(\Delta:y=f'\left(1\right)\left(x-1\right)+f\left(1\right)\Rightarrow y=\left(-2\right)\left(x-1\right)-2\)
Ta có y'=3x^2 - 6x +1
gọi M(x0;y0) là tiếp điểm
Ta có x0 =1 do đó yo =1^3 -3.1^2+1-1=-2
y'(1)=3.1^2-6.1+1=-2
Vậy phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1 là y=y'(1)(x-1)+(-2)=>y=-2x
a. \(y'\left(x_0\right)=-2x_0+3\)
b. phương trình tiếp tuyến tại x0 =2 là
\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=-\left(x-2\right)+0\text{ hay }y=-x+2\)
c.\(y_0=0\Rightarrow\orbr{\begin{cases}x_0=1\\x_0=2\end{cases}\Rightarrow PTTT\orbr{\begin{cases}y=x-1\\y=-x+2\end{cases}}}\)
d. vì tiếp tuyến vuông góc với đường thẳng có hệ số góc bằng 1 nên tiếp tuyến có hệ số góc = -1
hay \(-2x_0+3=-1\Leftrightarrow x_0=2\Rightarrow PTTT:y=-x+2\)
Đáp án B
Tọa độ giao điểm của (C) và đường thẳng y = x − 3 là nghiệm của hệ:
y = − 2 x + 3 x − 1 y = x − 3 ⇔ x = 2 y = − 1 x = 0 y = − 3 ⇒ A ( 2 ; − 1 ) B ( 0 ; − 3 )
y ' = − 1 x − 1 2
Phương trình tiếp tuyến với ( C) tại A ( 2 ; − 1 ) là:
y = − 1 2 − 1 2 ( x − 2 ) − 1 = − x + 1
Phương trình tiếp tuyến với ( C) tại B ( 0 ; − 3 ) là:
y = − 1 0 − 1 2 ( x − 0 ) − 3 = − x − 3
Ta có: \({\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\)
a) Ta có điểm \(M\left( { - 1;1} \right)\) không thuộc đồ thị hàm số \(\left( C \right)\) nên không có phương trình tiếp tuyến tại điểm \(M\left( { - 1;1} \right)\).
b) Với \({x_0} = 2 \Leftrightarrow {y_0} = {2^3} = 8\). Vậy \(N\left( {2;8} \right)\).
Tiếp tuyến của \(\left( C \right)\) tại điểm \(N\left( {2;8} \right)\) có hệ số góc là: \(f'\left( 2 \right) = {3.2^2} = 12\).
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(N\) là:
\(y - 8 = 12\left( {x - 2} \right) \Leftrightarrow y = 12x - 24 + 8 \Leftrightarrow y = 12{\rm{x}} - 16\).