Biết rằng \({5^x} = 3\) và \({3^y} = 5\).
Không sử dụng máy tính cầm tay, tính giá trị của \(xy\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{1}{117}=a;\dfrac{1}{119}=b\)
\(\Rightarrow3ab-4a\left(5+118b\right)-5ab+24a\)
= \(3ab-20a-472ab-5ab+24a\)
= \(-474ab+4a\)
= \(-\dfrac{474}{117.119}+\dfrac{4}{117}=-\dfrac{1}{117}\left(\dfrac{474}{119}-4\right)\)
= \(-\dfrac{1}{117}.\left(-\dfrac{2}{119}\right)=\dfrac{2}{117.119}\)
a, \(\hept{\begin{cases}4x-y=7\\x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=4x-7\left(1\right)\\x+3y=5\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta được : \(x+3\left(4x-7\right)=5\Leftrightarrow x+12x-21=5\)
\(\Leftrightarrow13x=26\Leftrightarrow x=2\)
Theo (1) ta có : \(y=8-7=1\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
\(a,cos\left(\dfrac{5\pi}{12}\right)=cos\left(\dfrac{\pi}{4}+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{4}\right)cos\left(\dfrac{\pi}{6}\right)-sin\left(\dfrac{\pi}{4}\right)sin\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{2}}{2}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{2}\cdot\dfrac{1}{2}=\dfrac{\sqrt{6}-\sqrt{2}}{4}\\ sin\left(\dfrac{5\pi}{12}\right)=sin\left(\dfrac{\pi}{4}+\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{4}\right)cos\left(\dfrac{\pi}{6}\right)+cos\left(\dfrac{\pi}{4}\right)sin\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{2}}{2}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{2}\cdot\dfrac{1}{2}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\\ tan\left(\dfrac{5\pi}{12}\right)=\dfrac{sin\left(\dfrac{5\pi}{12}\right)}{cos\left(\dfrac{5\pi}{12}\right)} =2-\sqrt{3}\\ cot\left(\dfrac{5\pi}{12}\right)=\dfrac{1}{tan\left(\dfrac{5\pi}{12}\right)}=\dfrac{1}{2-\sqrt{3}}\)
\(b,cos\left(-555^o\right)=cos\left(3\pi+\dfrac{\pi}{12}\right)=-cos\left(\dfrac{\pi}{12}\right)=-cos\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=-\left[cos\left(\dfrac{\pi}{3}\right)cos\left(\dfrac{\pi}{4}\right)+sin\left(\dfrac{\pi}{3}\right)sin\left(\dfrac{\pi}{4}\right)\right]=-\dfrac{\sqrt{6}+\sqrt{2}}{4}\\ sin\left(-555^o\right)=sin\left(3\pi+\dfrac{\pi}{12}\right)=sin\left(\dfrac{\pi}{12}\right)=sin\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=sin\left(\dfrac{\pi}{3}\right)cos\left(\dfrac{\pi}{4}\right)-cos\left(\dfrac{\pi}{3}\right)sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}-\sqrt{2}}{4}\\ tan\left(-555^o\right)=\dfrac{sin\left(-555^o\right)}{cos\left(-555^o\right)}=-2+\sqrt{3}\\ cot\left(-555^o\right)=\dfrac{1}{tan\left(-555^o\right)}=\dfrac{1}{-2+\sqrt{3}}=-2-\sqrt{3}\)
\(5^x=3\Leftrightarrow x=log_53\\ 3^y=5\Leftrightarrow y=log_35\\ \Rightarrow xy=log_53\cdot log_35=1\)