Chứng minh biểu thức sau đây không phụ thuộc vào x
A = 3(sin4x + cos4x) -2(sin6x+cos6x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: sin 4 x + cos 4 x = sin 2 x + cos 2 x 2 - 2 sin 2 x . cos 2 x = 1 - 2 sin 2 x . cos 2 x
b, Ta có: sin 6 x + cos 6 x = sin 2 x + cos 2 x 3 - 3 sin 2 x cos 2 x sin 2 x + cos 2 x = 1 - 3 sin 2 x cos 2 x
Chọn A.
Ta có:
+ sin4x + cos4x = (sin2x + cos2x)2 - 2sin2x.cos2x = 1 - 2sin2x.cos2x.
+ sin4x + cos4x = 1 - 3sin2x.cos2x.
Do đó
A = 3(1 - 2sin2x.cos2x) - 2(1 - 3sin2x.cos2x) = 1.
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
f(x) = 1 ⇒ f′(x) = 0
A = cos 6 x + 3 sin 2 x . cos 2 x + 2 sin 4 α . cos 2 x + sin 4 α
= cos 6 x + 3.(1 - cos 2 x ) cos 4 x + 2 sin 4 α . cos 2 x + sin 4 α
= cos 6 x + 3 cos 4 x - 3 cos 6 x + 2. sin 4 α .(1 - sin 2 x ) + sin 4 α= cos 6 x + 3 cos 4 x - 3 cos 6 x + 2 sin 4 α - 2 sin 6 x + sin 4 α
= -2.( cos 6 x + sin 6 x ) + 3 cos 4 x + 3 sin 4 α
= -2.( cos 6 x + sin 6 x ) + 3.( cos 4 x + sin 4 α ) = 1
Vậy biểu thức A không phụ thuộc vào x.
\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)
\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)
\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)
\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)
\(=4\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x-cos4x\)
\(=4-2\left(2sinx.cosx\right)^2-cos4x\)
\(=4-2sin^22x-cos4x\)
\(=3+\left(1-2sin^22x\right)-cos4x\)
\(=3+cos4x-cos4x\)
\(=3\)
\(A=3\left[\left(sin^2x+cos^2x\right)^2-2\cdot sin^2x\cdot cos^2x\right]-2\left[\left(sin^2x+cos^2x\right)^3-3\cdot sin^2x\cdot cos^2x\left(sin^2x+cos^2x\right)\right]\)
\(=3\left[1-2\cdot sin^2x\cdot cos^2x\right]-2\left[1-3\cdot sin^2x\cdot cos^2x\right]\)
\(=3-6\cdot sin^2x\cdot cos^2x-2+6\cdot sin^2x\cdot cos^2x\)
=1