cho 2 số a , b thỏa mãn : 3b2-4a4=11ab
tính \(P=\frac{14a+10b}{29a-4b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
Đáp án D
Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu (S) và mặt phẳng (P) sao cho KM lớn nhất
Đặt \(T=a^2+4b^2\)(1)
Vì a+4b=1 => a=1-4b
Thế vào (1) ta được: \(T=\left(1-4b\right)^2+4b^2=20b^2-8b+1\)
<=> \(T=20\left(b^2-2\cdot\frac{1}{5}\cdot b+\frac{1}{25}\right)+\frac{1}{5}=20\left(b-\frac{1}{5}\right)^2+\frac{1}{5}\)
=> \(T\ge\frac{1}{5}\left(đpcm\right)\)
trả lời
anh ơi cái anyf dùng bất đẳng thức
(ax+by)^2<= (a^2+b^2)(x^2+y^2) cũng được nhỉ
cách này nhanh hơn đó ạ
hok tốt
Lời giải:
$a^2-2ab-3b^2\geq 0$
$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$
$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$
$\Leftrightarrow (a+b)(a-3b)\geq 0$
$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)
$\Leftrightarrow a\geq 3b$
Xét hiệu:
$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$
$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$
$\Rightarrow P\geq \frac{37}{3}$
Vậy $P_{\min}=\frac{37}{3}$
\(a^2=3b^2\)
Vì \(a^2;b^2\) là số chính phương
\(\Rightarrow a^2⋮̸3b^2\)
Nên không tồn tại a;b nguyên dương thỏa đẳng thức \(a^2=3b^2\)
Phần lỗi màu đỏ là a2 không thể chia cho 3 có thương là b2 là số chính phương
Ta có:
\(3b^2-4a^4=11ab\)
\(\Leftrightarrow3b^2-11ab-4a^4=0\)
\(\Leftrightarrow\left(3b^2-12ab\right)+\left(ab-4a^4\right)=0\)
\(\Leftrightarrow3b\left(b-4a\right)+a\left(b-4a^3\right)=0\)