a) (2x - 1)2 - (2x + 5)(2x + 1) = 10
b) 92 (x - 1) + 25 .(1 - x) = 0
c) x2 + 3x - 4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#040911`
`a)`
\(\left(2x-1\right)^2-\left(2x+5\right)\left(2x+1\right)=10\)
\(\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10 \\ \Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10 \\ \Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10 \\ \Leftrightarrow -16x - 4 = 10 \Leftrightarrow -16x = 10 + 4 \\ \Leftrightarrow -16x = 14 \\ \Leftrightarrow x = \dfrac{-7}{8}\)
Vậy, `x = -7/8`
`b)`
`9^2(x - 1) + 25(1 - x) = 0`
`<=> 9^2(x - 1) - 25(x - 1) = 0`
`<=> (x - 1)(9^2 - 5^2) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\)
Vậy, `x = 1`
`c)`
`x^2+3x - 4 = 0`
`<=> x^2 + 4x - x - 4 = 0`
`<=> (x^2 - x) + (4x - 4) = 0`
`<=> x(x - 1) + 4(x - 1) = 0`
`<=> (x + 4)(x - 1) = 0`
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{Vậy, }x\in\left\{-4;1\right\}\)
a: =>4x^2-4x+1-(4x^2+2x+10x+5)=10
=>4x^2-4x+1-10-4x^2-12x-5=0
=>-16x-4=0
=>x=-1/4
b: =>(x-1)(9^2-25)=0
=>x-1=0
=>x=1
c: =>x^2+4x-x-4=0
=>(x+4)(x-1)=0
=>x=1 hoặc x=-4
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
`Answer:`
Bài 1:
a) \(7+2x=22-3x\)
\(\Leftrightarrow2x+3x=22-7\)
\(\Leftrightarrow5x=15\)
\(\Leftrightarrow x=3\)
b) \(8x-3=5x+12\)
\(\Leftrightarrow8x-5x=12+3\)
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=5\)
c) \(x-12+4x=25+2x-1\)
\(\Leftrightarrow x-12+4x-25-2x+1=0\)
\(\Leftrightarrow\left(x+4x-2x\right)+\left(1-12-25\right)=0\)
\(\Leftrightarrow3x-36=0\)
\(\Leftrightarrow x=12\)
d) \(x+2x+3x-19=3x+5\)
\(\Leftrightarrow6x-19=3x+5\)
\(\Leftrightarrow6x-3x=5+19\)
\(\Leftrightarrow3x=24\)
\(\Leftrightarrow x=8\)
Bài 2:
a) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2,3x-6,9=0\\0,1x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-20\end{cases}}}\)
b) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)
\(\Leftrightarrow2x+7=0\text{ hoặc }x-5=0\text{ hoặc }5x+1=0\)
\(\Leftrightarrow x=-\frac{7}{2}\text{ hoặc }x=5\text{ hoặc }x=-\frac{1}{5}\)
c) \(\left(4x+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x+2=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x^2=-1\text{(Loại)}\end{cases}}}\)
d) \(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow x^2-4+\left(3x-2x^2-6+4x\right)=0\)
\(\Leftrightarrow x^2-4=\left(-2x^2+7x-6\right)=0\)
\(\Leftrightarrow x^2-4-2x^2+7x-6=0\)
\(\Leftrightarrow-x^2+7x-10=0\)
\(\Leftrightarrow x^2-5x-2x+10=0\)
\(\Leftrightarrow x.\left(x-5\right)-2.\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)
\(a,x^2-10x=-25\)
\(< =>x^2-10x+25=0\)
\(< =>\left(x-5\right)^2=0< =>x=5\)
b, \(4x^2-4x=-1\)
\(< =>4x^2-4x+1=0\)
\(< =>\left(2x-1\right)^2=0< =>x=\frac{1}{2}\)
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
`#040911`
`a)`
`(2x - 1)^2 - (2x + 5)(2x + 1) = 10`
`\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10`
`\Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10`
`\Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10`
`\Leftrightarrow -16x - 4 = 10`
`\Leftrightarrow -16x = 10 + 4`
`\Leftrightarrow -16x = 14`
`\Leftrightarrow x = \dfrac{-7}{8}`
Vậy, `x= \dfrac{-7}{8}`
`b)`
`9^2(x - 1) + 25(1 - x) = 0`
`\Leftrightarrow 9^2(x - 1) - 25(x - 1) = 0`
`\Leftrightarrow (x - 1)(9^2 - 25) = 0`
`\Leftrightarrow`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)
`\Leftrightarrow`\(\left[{}\begin{matrix}x=1\\\left(9-5\right)\left(9+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\4\cdot14=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\\ \text{Vậy, x = 1}\)
`c)`
\(x^2+3x-4=0\)
`\Leftrightarrow x^2 + 4x - x - 4 = 0`
`\Leftrightarrow (x^2 - x) + (4x - 4) = 0`
`\Leftrightarrow x(x - 1) + 4(x - 1) = 0`
`\Leftrightarrow (x + 4)(x - 1) = 0`
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{ Vậy, }x\in\left(-4;1\right)\)