phân tích đa thức thành nhân tử
x2-y2+a2-b2+2ax+2by
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\left(a^2+b^2\right)^2-4a^2b^2\)
\(=\left(a^2-2ab+b^2\right)\left(a^2+2ab+b^2\right)\)
\(=\left(a-b\right)^2\cdot\left(a+b\right)^2\)
c) \(a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
a,x(x+y)-5x-5y
=x(x+y)-5(x+y)
=(x+y)(x-5)
b,3x-5y-6ax+10ay
=(3x-6ax)-(5y-10ay)
=3x(1-2a)-5y(1-2a)
=(1-2a)(3x-5y)
c,a2-6a-b2+6b
=(a2-b2)-(6a-6b)
=(a-b)(a+b)-6(a-b)
=(a-b)(a+b-6)
d,100a2-20a-2b-b2
=(100a2-b2)-(20a+2b)
=(10a-b)(10a+b)-2(10a+b)
=(10a+b)(10a-b-2)
e,36x2-12x+1-b2
=(36x2-12x+1)-b2
=(6x-1)2-b2
=(6x-1-b)(6x-1+b)
f,x2-z2+y2-2xy
=(x2-2xy+y2)-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
a) x2 + xy –x – y = x(x + y) – (x + y) = (x + y)(x -1 ).
b) a2 – b2 + 8a + 16 = (a2 + 8a + 16) – b2 = (a + 4)2 – b2
= (a + 4 – b)(a + 4 + b).
Xét phương án C:
(C) tiếp xúc với trục Oy khi d ( I ; y ' O y ) = R ⇔ a = R .
Do đó đáp án (C) sai vì nếu a= -9 => R= -9 < 0 (vô lý)
Chọn C.
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
a) x2-xy+5y-25
= x(2-y)+ 5(y-2)
= x(2-y)-5(2-y)
= (x-5)(2-y)
Lời giải:
$x^2-y^2+a^2-b^2+2ax+2by=(x^2+a^2+2ax)-(y^2+b^2-2by)$
$=(x+a)^2-(y-b)^2=(x+a-y+b)(x+a+y-b)$