Phân tích đa thức thành nhân tử:
3x2y-6xy+2x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân tích đa thức 3x^2y - 6xy + 2x - 2 thành nhân tử, ta thực hiện các bước sau: Bước 1: Nhóm các thuật ngữ chung nhau. 3x^2y - 6xy + 2x - 2 = (3x^2y - 6xy) + (2x - 2) Bước 2: Phân tách từng nhóm thuật ngữ. 3x^2y - 6xy = 3xy(x - 2) 2x - 2 = 2(x - 1) Bước 3: Kết hợp các nhân tử đã phân tích. 3x^2y - 6xy + 2x - 2 = 3xy(x - 2) + 2(x - 1) Do đó, đa thức đã được phân tích thành nhân tử là 3xy(x - 2) + 2(x - 1).
a) \(2x^3+6xy-x^2z-3yz\)
= \(\left(2x^3+6xy\right)-\left(x^2z+3yz\right)\)
=\(2x\left(x^2+3y\right)-z\left(x^2+3y\right)\)
=\(\left(x^2+2y\right)\left(2x-z\right)\)
b)\(x^2-6xy+9y^2-49\)
=\(x^2-2.x.3y+\left(3y\right)^2-7^2\)
=\(\left(x-3y\right)^2-7^2\)
=\(\left(x-3y+7\right)\left(x-3y-7\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
\(x^3-x+3x^2+3xy^2+y^3-y\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
\(5x^2-6xy+y^2=\left(9x^2-6xy+y^2\right)-4x^2=\left(3x-y\right)^2-4x^2=\left(3x-y-2x\right)\left(3x-y+2x\right)=\left(x-y\right)\left(5x-y\right)\)
\(5x^2-6xy+y^2\)
\(=5x^2-5xy-xy+y^2\)
\(=5x\left(x-y\right)-y\left(x-y\right)\)
\(=\left(x-y\right)\left(5x-y\right)\)
x²-6xy+9y²-36 =(x²-6xy+9y²)-36 =(x-3y)²-6² =(x-3y+6)(x-3y-6)
\(3x^2-6xy+9y^2-12\)
\(=3\cdot x^2-3\cdot2xy+3\cdot3y^2-3\cdot4\)
\(=3\cdot\left(x^2-2xy+3y^2-4\right)\)
\(3x^2y-6xy+2x-4\) (sửa đề)
\(=3xy\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3xy+2\right)\)