Gọi a,b là hai nghiệm của đa thức P(x)=30x2-30x-2004.
Hãy rút gọn biểu thức A=\(\frac{30\left(a^{2004}+b^{2004}\right)-3\left(a^{2003}+b^{2003}\right)}{a^{2002}+b^{2002}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\left|x-2013\right|+\left|2014-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2013\right|+\left|2014-x\right|\ge\left|x-2013+2014-x\right|\)
\(\Rightarrow A\ge\left|1\right|\)
\(\Rightarrow A\ge1.\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}x-2013\ge0\\2014-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x\le2014\end{matrix}\right.\Rightarrow2013\le x\le2014.\)
Vậy \(MIN_A=1\) khi \(2013\le x\le2014.\)
Chúc bạn học tốt!
Bạn nào trả lời bài này nhanh nhất thì add vs mk , mk sẽ tặng 1 thẻ điện thoại 50k cho 2 bạn trả lời nhanh nhất nhé!
Nhanh các bạn ơi!!!
Hứa k bùng đâu