ABC nhọn, đường cao AA1,BB1,CC1 cắt nhau tại H. kẻ trung tuyến AM, G là trọng tâm của tam giác ABC. Chứng minh GH song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử →A1B=k→A1C;→B1C=m→B1A;→C1A=n→C1BA1B→=kA1C→;B1C→=mB1A→;C1A→=nC1B→
Theo giả thiết ta có : →AA1+→BB1+→CC1=⃗0=>→CA1+→AB1+→BC1=⃗0=>11−k→BC+11−n→AB+11−m→CA=⃗0AA1→+BB1→+CC1→=0→=>CA1→+AB1→+BC1→=0→=>11−kBC→+11−nAB→+11−mCA→=0→
hay →BC=1−k1−m→AC+1−k1−n→BABC→=1−k1−mAC→+1−k1−nBA→
mà →BC=→BA+→ACBC→=BA→+AC→
=> 1−k1−m=1;1−k1−n=11−k1−m=1;1−k1−n=1
=> k=m=nk=m=n
Theo định lí Cê va cho 3 đường đồng quy : kmn=−1kmn=−1=>k=m=n=−1k=m=n=−1
-> A1,B1,C1 là trung điểm BC,CA,AB
-> tam giác ABC đều
a: Xét ΔAHB và ΔAHC có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔAHB=ΔAHC
b: Xet ΔABC có
AH,BD là trung tuyến
AH cắt BD tại G
=>G là trọng tâm
c: Xét ΔABC có
H là trung điểm của BC
HE//AC
=>E là trung điểm của AB
=>C,G,E thẳng hàng
Bạn thử xem lại đề xem, nó không song song đâu.