K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2021

a) Xét Δ ADB vuông  và ΔBHD vuông có:

             BD là cạnh chung

∠ ABD = ∠ HBD ( do BD là tia phân giác của ∠ BAC, H ∈ BC )

Do đó: Δ ADB = Δ BHD( ch - gn )

⇒ AD = DH ( hai cạnh tương ứng )

b) Xét Δ ADK và Δ HDC có

      AD=DH ( cmt )

∠ ADK = ∠ HDC ( đối đỉnh )

Vậy: Δ ADK = Δ HDC ( cgv - gn )

⇒ AD = DC ( 2 cạnh tương ứng )

c) Ta có: BK = BA + AK ( do B,A,K thẳng hàng )

              BC = BH + HC ( do B,H,C thẳng hàng )

mà BA = BH ( Δ BAD = ΔBHD)

và AK = HC ( Δ ADK = ΔHDC )

⇒ BK = BC ( 1 )

Xét Δ KBC có BK = BC  ( cmt )  ( 2 )

Từ ( 1 ) và ( 2 ):  ⇒  KBC cân tại B ( định nghĩa tam giác cân )

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: AD=DH

DH<DC

=>AD<DC

c: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại D

=>D là trực tâm

=>BD vuông góc KC

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔABD=ΔHBD

b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó: ΔADK=ΔHDC

Suy ra: DK=DC

c: Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

hay ΔBKC cân tại B

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH

b: ta có: ΔBAD=ΔBHD

nên DA=DH

mà DH<DC

nên DA<DC

c: Ta có: BA=BH

DA=DH

Do đó: BD là đường trung trực của AH

hay BD⊥AH

4 tháng 2 2021

Mọi người ơi giúp em đi em cần gấp ạ

Huhu

24 tháng 4 2018

a) Xét tam giác ABD và tam giác BDH có: góc B1= góc B2 (do BĐ là pg ABD)

      BD cạnh chung

      góc ABD= góc BHD( =90 độ)

=> tam giác ABD= tam giác BDH( g.c.g)

=> AD=DH( 2 cạnh tương ứng)

b) mk ki bt làm

c) Xét tam giác BHK vuông tại H có: góc B+ góc HKB= 90 độ( t/c)

  Xét tam giác BAC có : góc B+ góc ACB= 90 độ( t/c)

=> góc HKB= góc ACB (cùng phụ vs góc B)

=> góc AKD = góc HCD

Xét tam giác ADK và tam giác HDC có: 

góc AKD = góc HCD(cmt)

AD=DH( c/m câu a)

góc KAD= góc DHC( = 90 độ)

=> tam giác ADK= tam giác HDC( g.c.g)

=> AK=HC( 2 cạnh tương ứng)

Mà BA= BH( tam giác ABD= tam giác BDH)

      BA+ AK= BK , BH+HC= BC

       => BK=BC

=> tam giác KBC cân tại B( đpcm)

24 tháng 4 2018

a) Xét tam giacd ABD và tam giác HBD có :

góc ABD = góc HBD ( vì BD là tia phân giác )

BD : cạnh chung 

Góc BAD = góc BHD = 90 độ

=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )

=> AD = DH ( cặp cạnh tương ứng )

b) Xét tam giác HDC có :

góc DHC = 90 độ ( vì kề bù với góc BHD = 90 độ )

=> DC > DH ( vì DC là cạnh đối diện với góc vuông )

mà AD = DH ( câu a)

=> AD < DC ( đpcm )

c) Vì  AB = BH ( vì tam giác ABD = tam giác HBD )

=> tam giác ABH cân

Xét tam giác ADK và tam giác HDC có 

AD = DH ( vì tam fiacs ABD = tam giác HBD )

góc KAD = góc CHD = 90

Góc ADK = góc HDC ( đối đỉnh )

=> tam giác ADK = tam giác HDC ( g-c-g )

=> AK = HC ( cặp cạnh tương ứng )

mà AB + AK = BK 

BH + CH = BD 

Mà AB = BH (cmt )

=> BK = BC 

=> tam giác KBC cân (đpcm )

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

gócHBK chung

=>ΔBHK=ΔBAC

=>BK=BC

c: ΔBKC cân tại B

mà BM là trung tuyến

nên BM là phân giác

=>B,D,M thẳng hàng

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B