so sánh:
219 và 912
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(21^{100}-21^{98}< 21^{99}-21^{98}< 21^{99}-21^9\)
\(\Rightarrow21^{100}-21^{98}< 21^{99}-21^9\)
Ta có:
\(1-\frac{-219}{220}=1\frac{219}{220}=1+\frac{219}{220}\)
\(1-\frac{-215}{216}=1\frac{215}{216}=1+\frac{215}{216}\)
Ta so sánh hai phân số \(\frac{219}{220};\frac{215}{216}\)
Ta có:
1-219/220=1/220
1-215/216=1/216
Vì 220>216 => 1/220 < 1/216 => 219/220 > 215/216 => 1+219/220 > 1+215/220 => \(-\frac{219}{220}>\frac{-215}{216}\)
Vậy \(-\frac{219}{220}>\frac{-215}{216}\)
a)Ta có \(\widehat{BIK}\) là góc ngoài của BAI.
Nên \(\widehat{BIK}>\widehat{BAI}\) (1)
b) \(\widehat{CIK}>\widehat{CAI}\)( Góc ngoài của \(\Delta\) CAI)
Từ (1) và (2) ta có:
\(\widehat{BIK}+\widehat{CIK}>\widehat{BAI}+\widehat{CAI}\)
\(\Rightarrow\widehat{BIC}>\widehat{BAC}\)
) Ta có ∠BIK là góc ngoài của ∠BAI( hay là góc ngoài ∠BAK)
Các em lưu ý nếu không hiểu: Góc ngoài của tam giác lớn hơn mỗi ngóc trong không kề với nó (ở đây là tam giác ∆ BIA)
Nên ∠BIK > ∠BAK (1)
b) Góc ∠CIK > ∠CAI (2) (Góc ngoài của ∆ CAI)
Từ (1) và (2) ta có: ∠BIK + ∠CIK > ∠BAK + ∠CAI
Mà ∠BIC = ∠BIK + ∠CIK; ∠BAC = ∠BAK + ∠CAI
⇒ ∠BIC > ∠BAC.
tong 3 so la;579+1245+912=2736
so thu nhat va so thu 2 la;2736:2=1368
so thu nhat la;1368-1245=123
so thu 2 la;579-123=456
so thu 3 la;1245-456=789
dap so;123;456;789
Ta có:\(21^9=\left(21^3\right)^3=\left(9261\right)^3\)
\(9^{12}=\left(9^4\right)^3=\left(6561\right)^3\)
Vì \(6561^3< 9261^3\)
Vậy \(9^{12}< 21^9\)