K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AB vuông góc AC

DC vuông góc AC

=>AB//DC

b: AB//CD

=>góc PBA=góc BDC

=>góc BDC=120 độ

góc BDn=180-120=60 độ

góc mBD=góc PBA=120 độ

góc mBP=góc ABD=180-120=60 độ

c: góc xBD=1/2*góc ABD=1/2*120=60 độ

góc yDB=1/2*góc BDn=1/2*120=60 độ

=>góc xBD=góc yDB

=>Bx//Dy

góc yBD+góc yDB

=1/2(góc mBD+góc nDB)

=1/2*180=90 độ

=>Bz vuông góc Dy

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

11 tháng 2 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

MN = (AB + M’N') / 2 (tính chất đường trung hình hình thang)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Mà M'D = AD, CN' = BC.

Thay vào (1) : Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

25 tháng 9 2016

a/ AB //CD (với AB < CD) phân giác góc ngoài tại và D cắt nhau tại M, --> AM vuông góc MD (phân giác của hai góc bù nhau), AM kéo dài cắt DC tại Q Trong tg AQD có DM phân giác và đường cao --> 
tg ADQ cân ại D --> M trung điểm AQ 
--> tương tự BN và BN vuông góc CN và BN kéo dài cắt DC tại R --> tg BCR cân tại C và N trung điểm BR --> MN đườn trung bình của tg của hình thang ABRQ --> MN // AB --> MN // CD 
b/ Trong hình hang ARBQ có 2MN = AB + QR (MN đường trung bình của hình thang ARBQ) 
--> 16 = AB + QD + CD + CP = AB + AD + CD + BC ( vì QD = AD, CR = BC) 
--> Chu vi hình thang = 16 cm

25 tháng 9 2016

a) MN // với CD nha các bạn

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

=>CABCD=14cm

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

=>CABCD=14cm

16 tháng 10 2022

a: 

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD//AB

b: MN=(AB+M'N')/2

=(AB+M'D+CD+CN')/2

mà M'D=AD và CN'=CB

nên MN=(AB+CD+AD+CB)/2

13 tháng 9 2016

a) Gọi E, F lần lượt là giao điểm của AM và CD, BN và CD

Ta có : AB//CD (gt) => E = A1(so le trong)

                               Mà A1=A2(gt)

              Nên A2 = E

Xét ΔADE cân tại D, có DM là p/giác nên DM đồng thời là trung tuyến

=>AM= EM

Chứng mih tương tự, ta được :

    BN = FN

Xét hình thang ABEF có :    AM=BN(cm trên)

                                            BN=FN(cm trên)

Do đó MN là đường TB của HÌNH thang ABEF

=> MN=\(\frac{\text{EF}+AB}{2}\) 

    MN//AB//EF

Vậy MN// CD(đpcm)

b)Do ED= AD; BC=FC

Mà ED + DC + CF = EF

Nên AD + DC + BC = EF

Lại có MN\(\frac{\text{EF}+AB}{2}\) (CM trên)

Suy ra MN=\(\frac{AD+DC+BC+AB}{2}\) = \(\frac{a+b+c+d}{2}\)