K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

y=3/2x có a=3/2>0

=>y=3/2x đồng biến

y=-4x có a=-4<0

=>y=-4x nghịch biến

11 tháng 12 2021

Từ trái qua phải nhé.

\(\begin{matrix}x=0;2\\y=-\dfrac{3}{2};\dfrac{3}{4};3\end{matrix}\)

NV
22 tháng 4 2022

\(y=\dfrac{1}{3x^2-x-2}=\dfrac{1}{\left(x-1\right)\left(3x+2\right)}=\dfrac{1}{5}.\dfrac{1}{x-1}-\dfrac{3}{5}.\dfrac{1}{3x+2}\)

\(y'=\dfrac{1}{5}.\dfrac{\left(-1\right)^1.1!}{\left(x-1\right)^2}-\dfrac{3}{5}.\dfrac{\left(-1\right)^1.3^1.1!}{\left(3x+2\right)^2}\)

\(y''=\dfrac{1}{5}.\dfrac{\left(-1\right)^2.2!}{\left(x-1\right)^3}-\dfrac{3}{5}.\dfrac{\left(-1\right)^2.3^2.2!}{\left(3x+2\right)^3}\)

\(\Rightarrow y^{\left(n\right)}=\dfrac{1}{5}.\dfrac{\left(-1\right)^n.n!}{\left(x-1\right)^{n+1}}-\dfrac{3}{5}.\dfrac{\left(-1\right)^n.3^n.n!}{\left(3x+2\right)^{n+1}}\)

\(\Rightarrow y^{\left(2019\right)}=\dfrac{1}{5}.\dfrac{\left(-1\right)^{2019}.2019!}{\left(x-1\right)^{2020}}-\dfrac{3}{5}.\dfrac{\left(-1\right)^{2019}.3^{2019}.2019!}{\left(3x+2\right)^{2019}}\)

\(=\dfrac{2019!}{5}\left(\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)

NV
22 tháng 4 2022

\(y=\dfrac{1}{2x^2+x-1}=\dfrac{1}{\left(x+1\right)\left(2x-1\right)}=\dfrac{2}{3}.\dfrac{1}{2x-1}-\dfrac{1}{3}.\dfrac{1}{x+1}\)

\(y'=\dfrac{2}{3}.\dfrac{-2}{\left(2x-1\right)^2}-\dfrac{1}{3}.\dfrac{-1}{\left(x+1\right)^2}=\dfrac{2}{3}.\dfrac{\left(-1\right)^1.2^1.1!}{\left(2x-1\right)^2}-\dfrac{1}{3}.\dfrac{\left(-1\right)^1.1!}{\left(x+1\right)^2}\)

\(y''=\dfrac{2}{3}.\dfrac{\left(-1\right)^2.2^2.2!}{\left(2x-1\right)^3}-\dfrac{1}{3}.\dfrac{\left(-1\right)^2.2!}{\left(x+1\right)^3}\)

\(\Rightarrow y^{\left(n\right)}=\dfrac{2}{3}.\dfrac{\left(-1\right)^n.2^n.n!}{\left(2x-1\right)^{n+1}}-\dfrac{1}{3}.\dfrac{\left(-1\right)^n.n!}{\left(x+1\right)^{n+1}}\)

\(\Rightarrow y^{\left(2019\right)}=\dfrac{2}{3}.\dfrac{\left(-1\right)^{2019}.2^{2019}.2019!}{\left(2x-1\right)^{2020}}-\dfrac{1}{3}.\dfrac{\left(-1\right)^{2019}.2019!}{\left(x+1\right)^{2020}}\)

\(=\dfrac{2019!}{3}\left(\dfrac{1}{\left(x+1\right)^{2020}}-\dfrac{2^{2020}}{\left(2x-1\right)^{2020}}\right)\)

NV
9 tháng 9 2021

1.

\(y'=\left(\dfrac{x}{lnx}\right)'.3^{\dfrac{x}{lnx}}.ln3=\dfrac{lnx-1}{ln^2x}.3^{\dfrac{x}{lnx}}.ln3\)

2.

\(y'=\left(tanx\right)'.tanx+\left(tanx\right)'.\dfrac{1}{tanx}=\dfrac{tanx}{cos^2x}+\dfrac{1}{tanx.cos^2x}\)

3.

\(y=\left(ln2x\right)^{\dfrac{2}{3}}\Rightarrow y'=\left(ln2x\right)'.\dfrac{2}{3}.\left(ln2x\right)^{-\dfrac{1}{3}}=\dfrac{1}{3x\sqrt[3]{ln2x}}\)

9 tháng 9 2021

Em cảm ơn anh nhiều ạ

y'=1/3*3x^2-2x+3=x^2-2x+3=(x-1)^2+2>0

=>y=1/3x^3-x^2+3x+4 luôn đồng biến trên từng khoảng xác định

\(y=\sqrt{x^2+4}\)

=>\(y'=\dfrac{-\left(x^2+4\right)'}{\left(x^2+4\right)^2}=\dfrac{-\left(2x\right)}{\left(x^2+4\right)^2}\)

=>Hàm số này không đồng biến trên từng khoảng xác định

\(y=x^3+4x-sinx\)

=>y'=3x^2+4-cosx

-1<=-cosx<=1

=>3<=-cosx+4<=5

=>y'>0

=>Hàm số luôn đồng biến trên từng khoảng xác định

y=x^4+x^2+2

=>y'=4x^3+2x=2x(2x^2+1)

=>Hàm số ko đồng biến trên từng khoảng xác định

8 tháng 4 2021

1/ \(y'=\dfrac{\left(\sqrt{x+1}\right)'x-x'\sqrt{x+1}}{x^2}=\dfrac{\dfrac{x}{2\sqrt{x+1}}-\sqrt{x+1}}{x^2}=\dfrac{-x-2}{2x^2\sqrt{x+1}}\)

2/ \(y'=\dfrac{1-x^2-\left(1-x^2\right)'x}{\left(1-x^2\right)^2}=\dfrac{1+x^2}{\left(1-x^2\right)^2}\)

3/ \(y'=\dfrac{-\left(x-\sqrt{x+1}\right)'}{\left(x-\sqrt{x+1}\right)^2}=\dfrac{-1+\dfrac{1}{2\sqrt{x+1}}}{\left(x-\sqrt{x+1}\right)^2}\)

4/ \(y'=f'\left(x\right)=2x-\dfrac{2x}{x^4}=2x-\dfrac{2}{x^3}\)

\(y'=0\Leftrightarrow\dfrac{2x^4-2}{x^3}=0\Leftrightarrow x=\pm1\)

5/ \(y'=\dfrac{\dfrac{1}{2\sqrt{1+x}}}{2\sqrt{1+\sqrt{1+x}}}\Rightarrow f\left(x\right).f'\left(x\right)=\sqrt{1+\sqrt{1+x}}.\dfrac{1}{4\sqrt{1+x}.\sqrt{1+\sqrt{1+x}}}=\dfrac{1}{4\sqrt{1+x}}=\dfrac{1}{2\sqrt{2}}\)

\(\Leftrightarrow2\sqrt{1+x}=\sqrt{2}\Leftrightarrow1+x=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)

Hãy nhớ câu tính đạo hàm này, bởi nó liên quan đến nguyên hàm sau này sẽ học

8 tháng 4 2021

ok cảm ơn bạn nhìu

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

Đáp án đúng là D

- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a = \dfrac{1}{3}\).

- Đồ thị hàm số  \(y =  - \dfrac{1}{3}x + 2\) là đường thẳng có hệ số góc là \(a =  - \dfrac{1}{3}\).

- Đồ thị hàm số \(y =  - 3x + 2\) là đường thẳng có hệ số góc là \(a =  - 3\).

Vì cả ba đường thẳng đều có hệ số góc khác nhau nên chúng cắt nhau.

- Đồ thị hàm số \(y = \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\).

- Đồ thị hàm số \(y =  - \dfrac{1}{3}x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)

- Đồ thị hàm số \(y =  - 3x + 2\) cắt trục tung tại điểm \(A\left( {0;2} \right)\)

Do đó điểm \(A\left( {0;2} \right)\) là giao điểm của ba đồ thị hàm số.

Vậy đồ thị của các hàm số trên là các đường thẳng cắt nhau tại một điểm. 

29 tháng 11 2021

PTHĐGĐ của hai hs: 

\(\dfrac{2}{3}x=x^2-x+\dfrac{2}{3}\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{2}{3}\end{matrix}\right.\)

Thay x vào hàm số đầu tiên: \(\left[{}\begin{matrix}y=\dfrac{2}{3}\cdot1=\dfrac{2}{3}\\y=\dfrac{2}{3}\cdot\dfrac{2}{3}=\dfrac{4}{9}\end{matrix}\right.\)

Vậy hai hs cắt nhau tại: \(\left[{}\begin{matrix}A\left(1;\dfrac{2}{3}\right)\\A\left(\dfrac{2}{3};\dfrac{4}{9}\right)\end{matrix}\right.\)

NV
30 tháng 7 2021

1. \(y'=3x^2\sqrt{x}+\dfrac{x^3-5}{2\sqrt{x}}=\dfrac{7x^3-5}{2\sqrt{x}}\)

2. \(y'=3x^5+\dfrac{3}{x^2}+\dfrac{1}{\sqrt{x}}\)

3. \(y'=2-\dfrac{2}{\left(x-2\right)^2}\)