K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a)

\(\begin{array}{c}A = {\log _{\frac{1}{3}}}5 + 2{\log _9}25 - {\log _{\sqrt 3 }}\frac{1}{5} = {\log _{{3^{ - 1}}}}5 + 2{\log _{{3^2}}}{5^2} - {\log _{{3^{\frac{1}{2}}}}}{5^{ - 1}}\\ =  - {\log _3}5 + 2{\log _3}5 + 2{\log _3}5 = 3{\log _3}5\end{array}\)                                     

b) \(B = {\log _a}{M^2} + {\log _{{a^2}}}{M^4} = 2{\log _a}M + \frac{1}{2}.4{\log _a}M = 4{\log _a}M\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,A=ln\left(\dfrac{x}{x-1}\right)+ln\left(\dfrac{x+1}{x}\right)-ln\left(x^2-1\right)\\ =ln\left(\dfrac{x}{x-1}\cdot\dfrac{x+1}{x}\right)-ln\left(x^2-1\right)\\ =ln\left(\dfrac{x+1}{x-1}\right)-ln\left(x^2-1\right)\\ =ln\left(\dfrac{x+1}{x-1}\cdot\dfrac{1}{x^2-1}\right)\\ =ln\left[\dfrac{1}{\left(x-1\right)^2}\right]\\ =2ln\left(\dfrac{1}{x-1}\right)\)

\(b,21log_3\sqrt[3]{x}+log_3\left(9x^2\right)-log_3\left(9\right)\\ =7log_3\left(x\right)+log_3x^2+log_39-log_39\\ =7log_3x+2log_3x\\ =9log_3x\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với x > 0 bất kì và \(h = x - {x_0}\) ta có

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{x_0} + h} \right) - \ln {x_0}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}.{x_0}}} = \mathop {\lim }\limits_{h \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}}} = \frac{1}{{{x_0}}}\end{array}\)

Vậy hàm số \(y = \ln x\) có đạo hàm là hàm số \(y' = \frac{1}{x}\)

b) Ta có \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) nên \(\left( {{{\log }_a}x} \right)' = \left( {\frac{{\ln x}}{{\ln a}}} \right)' = \frac{1}{{x\ln a}}\)

12 tháng 5 2016

Ta có : \(y=\frac{1}{1+x+\ln x}\Rightarrow y'=\frac{-\left(1+\frac{1}{x}\right)}{\left(1+x+\ln x\right)^2}=\frac{-\left(1+x\right)}{x\left(1+x+\ln x\right)^2}\)

\(\Rightarrow\begin{cases}xy'=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\\y\left(y\ln x-1\right)=\frac{1}{1+x+\ln x}\left(\frac{\ln}{1+x+\ln x}-1\right)=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\end{cases}\)

\(\Rightarrow xy'=y\left(y\ln x-1\right)\Rightarrow\) Điều phải chứng minh

NV
21 tháng 2 2021

Cứ áp dụng công thức \(\left(ln\left|u\right|\right)'=\dfrac{u'}{u}\) thôi

Còn câu dưới thì: \(\int\dfrac{axdx}{x^2\sqrt{x^2+a}}\)

Đặt \(u=\sqrt{x^2+a}\Rightarrow x^2=u^2-a\Rightarrow xdx=udu\)

\(\Rightarrow I=\int\dfrac{a.u}{u\left(u^2-a\right)}du\)

Nguyên hàm hữu tỉ khá cơ bản, tách ra bằng hệ số bất định

21 tháng 2 2021

CMR \(F\left(x\right)=ln\dfrac{x^2-x\sqrt{2} 1}{x^2 x\sqrt{2} 1}\) là 1 nguyên hàm của hàm số \(f\left(x\right)=\dfrac{2... - Hoc24

Hi câu này nữa anh :> 

6 tháng 5 2016

\(y'=\frac{1-\ln x-\left(1-\ln x-1\right)}{x^2\left(1-\ln x\right)^2}=\frac{1}{x^2\left(1-\ln x\right)^2}\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

27 tháng 3 2022

quá đúng

29 tháng 3 2022

1234567890-01234567890-=qưertyuiop[]\';;lkjhfgdsazxcvbnm,./\'l;[]7894561230.+-

4 tháng 5 2016

Ta có :

\(M=\frac{7\ln\left(\sqrt{2}+1\right)^2-64\ln\left(\sqrt{2}+1\right)-50\ln\left(\sqrt{2}+1\right)^{-1}+2}{-3lg5-lg\left(10^{-1}.2^3\right)+6lg\left(10^{-\frac{1}{3}}.2^{\frac{2}{3}}\right)+4lg\left(10.5\right)}\)

    \(=\frac{2}{lg5+1-3lg2-2+4lg2+4}=\frac{1}{2}\)