K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: loading...

b: Tọa độ giao điểm là nghiệm của hệ phương trình sau:

\(\left\{{}\begin{matrix}2x+1=-x+3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=2\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{4}{3}+1=\dfrac{7}{3}\end{matrix}\right.\)

11 tháng 3 2017

a, HS Tự làm

b, Tìm được C(–2; –3) là tọa độ giao điểm của  d 1  và  d 2

c, Kẻ OH ⊥ AB (CHOx)

S A B C = 1 2 C H . A B = 9 4 (đvdt)

13 tháng 12 2023

Bài 12:

a: 

loading...

b: Phương trình hoành độ giao điểm là:

x+1=-x+3

=>x+x=3-1

=>2x=2

=>x=1

Thay x=1 vào y=x+1, ta được:

\(y=1+1=2\)

Vậy: (d1) cắt (d2) tại A(1;2)

c: Để (d1) cắt (d3) tại một điểm nằm trên trục tung thì

\(\left\{{}\begin{matrix}m\ne1\\m-1=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)

=>m=2

d: Thay x=1 và y=2 vào (d3), ta được:

\(m+m-1=2\)

=>2m-1=2

=>2m=1+2=3

=>\(m=\dfrac{3}{2}\)

Vậy: Khi m=3/2 thì ba đường thẳng (d1),(d2),(d3) đồng quy

 

6 tháng 7 2016

(d1): y = 1/2x + 2

và (d2): y = -x + 2

1. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy.

(d1) là đường thẳng đi qua hai điểm (0; 2) và (-4; 0)

  (d2) là đường thẳng đi qua hai điểm (0; 2) và  (2;0)

2. Tính chu vi và diện tích của tam giác ABC

(d1) và (d2) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2

Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được:

\(AC=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt{5}\)

\(BC=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)

Chu vi tam giác ABC : AC + BC + AB= 2√5 + 2√2 + 6

≈ 13,30

Diện tích tam giác ABC

\(\frac{1}{2}.OC.AB=\frac{1}{2}.2.6=6CM^2\)

NHÉ THAK NHÌU

19 tháng 11 2021

\(b,\) PT hoành độ giao điểm: \(3x+2=x-2\Leftrightarrow x=-2\Leftrightarrow y=-4\Leftrightarrow A\left(-2;-4\right)\)

Vậy \(A\left(-2;-4\right)\) là tọa độ giao điểm